Skip to main content
Log in

Electric Polarization in a Nanosized, Two-Layer, Ferromagnetic Film with Combined Uniaxial and Cubic Anisotropy in the Layers

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The average electric polarization arising in a two-layer, nanosized, ferromagnetic film with a combined uniaxial and cubic anisotropy and a vortical distribution of magnetization is studied numerically. Allowance for the cubic anisotropy leads to a multifold increase in the average electric polarization in samples with a positive constant of cubic anisotropy and a significant decrease in samples with a negative constant of cubic anisotropy. Analysis of the hysteresis of the average electric polarization in a magnetic field perpendicular to the film revealed striking differences in the field dependences in films with different cubic anisotropy. If the cubic anisotropy is positive, then the maxima of the average polarization curves shift to the region of low magnetic fields upon an increase in the anisotropy constant. The intensity of the maxima becomes larger, and the hysteresis practically disappears. For films with a negative constant of cubic anisotropy, the maxima of the average polarization curves shift to the region of high fields upon an increase in this constant and the intensity of the maxima becomes significantly smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. V. Prokaznikova and V. A. Paporkov, “Study of the magneto-optical properties of structures on curved surfaces for creating memory elements on magnetic vortices,” Russian Microelectron. 49, No. 5, 358–371 (2020).

    Article  Google Scholar 

  2. A. P. Pyatakov, A. S. Sergeev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, K. A. Zvezdin, and A. K. Zvezdin, “Micromagnetism and topological defects in magnetoelectric media,” Phys.-Usp. 58, 981–992 (2015).

    Article  CAS  Google Scholar 

  3. F. Matsukura, Y. Tokura, and H. Ohno, “Control of magnetism by electric fields,” Nat. Nanotechnol. 10, No. 3, 209–220 (2015).

    Article  CAS  Google Scholar 

  4. P. I. Karpov and S. I. Mukhin, “Polarizability of electrically induced magnetic vortex plasma,” Phys. Rev. B 95, 195136-1–195136-16 (2017).

    Article  Google Scholar 

  5. V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, “Theory of the inhomogeneous magnetoelectric effect,” Pis’ma ZhETF 37, No. 12, 565–567 (1983).

    Google Scholar 

  6. L. Vila, M. Darques, A. Encinas, U. Ebels, J. M. George, G. Faini, A. Thiaville, and L. Piraux, “Magnetic vortices in nanowires with transverse easy axis,” Phys. Rev. B 79, 172410-1–172410-4 (2009).

    Article  Google Scholar 

  7. M. Goiriena-Goikoetxea, K. Y. Guslienko, M. Roucod, I. Oruee, E. Berganzaf, M. Jaafarf, A. Asenjof, M. L. Fernández-Gubieda, L. Fernández Barquíng, and A. García-Arribasa, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017).

    Article  CAS  Google Scholar 

  8. K. L. Metlov, “Equilibrium large vortex state in ferromagnetic disks,” J. Appl. Phys. 113, 223905-1–223905-5 (2013).

    Article  Google Scholar 

  9. K. L. Metlov, “Simple analytical description for the cross-tie domain wall structure,” Appl. Phys. Lett. 79, 2609–2611 (2001).

    Article  CAS  Google Scholar 

  10. G. A. Meshkov, A. P. Pyatakov, A. D. Belanovsky, K. A. Zvezdin, and A. S. Logginov, “Writing vortex memory bits using electric field,” J. Magn. Soc. Jpn. 36, 46–48 (2012).

    Article  CAS  Google Scholar 

  11. N. V. Shul’ga and R. A. Doroshenko, “Nonuniform magnetoelectric effect in a nano-sized ferromagnetic film with surface anisotropy,” Phys. Met. Metallogr. 120, No. 7, 639–645 (2019).

    Article  Google Scholar 

  12. N. V. Shul’ga and R. A. Doroshenko, “Electric polarization in two-layer bounded ferromagnetic film,” J. Magn. Magn. Mater. 471, 304–309 (2019).

    Article  Google Scholar 

  13. N. V. Shul’ga and R. A. Doroshenko, “Hysteresis of the electric polarization in a two-layer ferromagnetic film with a vortical distribution of magnetization,” Phys. Met. Metallogr. 121, No. 6, 526–531 (2020).

    Article  Google Scholar 

  14. M. J. Donahue and D. G. Porter, OOMMF User’s Guide. Version 1.0 NISTIR 6376 (Gaithersburg, National institute of standards and technology, 1999).

  15. M. Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. 96, No. 6, 067601-1–067601-4 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shul’ga.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shul’ga, N.V., Doroshenko, R.A. Electric Polarization in a Nanosized, Two-Layer, Ferromagnetic Film with Combined Uniaxial and Cubic Anisotropy in the Layers. Phys. Metals Metallogr. 122, 645–650 (2021). https://doi.org/10.1134/S0031918X21060107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060107

Keywords:

Navigation