Skip to main content
Log in

Hysteresis of the Electric Polarization in a Two-Layer Ferromagnetic Film with a Vortical Distribution of Magnetization

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Hysteresis of the electric polarization of a two-layer exchange-coupled ferromagnetic film whose layers have the easy-plane and easy-axis anisotropy upon magnetization reversal is studied numerically. The magnetization reversal was carried out by a magnetic field perpendicular to the film plane from the saturation state along the easy magnetization axis. The dependences of the average electric polarization and the reduced magnetization of the film layers on the external magnetic field strength are constructed. The feasibility of sign reversal of the electric polarization in a magnetic field in films whose thickness is smaller than the transverse dimensions is found. No polarization sign reversal is observed in thicker films upon magnetization reversal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. G. Geng and Y. M. Jin, “Magnetic vortex racetrack memory,” J. Magn. Magn. Mater. 423, 84–89 (2017).

    Article  CAS  Google Scholar 

  2. G. A. Prinz, “Magnetoelectronics,” Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  3. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  4. R. Moriya, L. Thomas, M. Hayashi, Y. B. Bazaliy, Ch. Rettner, and S. P. Parkin, “Probing vortex-core dynamics using current-induced resonant excitation of a trapped domain wall,” Nat. Phys. 4, 368–372 (2008).

    Article  CAS  Google Scholar 

  5. P. I. Karpov and S. I. Mukhin, “Polarizability of electrically induced magnetic vortex plasma,” Phys. Rev. B 95, 195136-1–195136-16 (2017).

  6. J. Li, Y. Wang, J. Cao, X. Meng, F. Zhu, and R. Tai, “The control of magnetic vortex state in rectangular nanomagnet,” J. Magn. Magn. Mater. 451, 379–384 (2018).

    Article  CAS  Google Scholar 

  7. G. A. Meshkov, A. P. Pyatakov, A. D. Belanovsky, K. A. Zvezdin, A. S. Logginov, “Writing vortex memory bits using electric field,” J. Magn. Soc. Jpn. 36, 46–48 (2012).

    Article  CAS  Google Scholar 

  8. N. V. Shul’ga and R. A. Doroshenko, “Nonuniform magnetoelectric effect in a nano-sized ferromagnetic film with surface anisotropy,” Phys. Met. Metallogr. 120, 639–645 (2019).

    Article  Google Scholar 

  9. N. V. Shul’ga and R. A. Doroshenko, “Electric polarization in two-layer bounded ferromagnetic film,” J. Magn. Magn. Mater. 471, 304–309 (2019).

    Article  Google Scholar 

  10. Z.-H. Wei, Ch.-R. Chang, N. A. Usov, M.-F. Lai, and J. C. Wu, “Evolution of vortex states under external magnetic field,” J. Magn. Magn. Mater. 239, 1–4 (2002).

    Article  CAS  Google Scholar 

  11. V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, “Theory of non-uniform magnetoelectric effect,” Pis’ma Zh. Eksp. Teor. Fiz. 37, 565–567 (1983).

    Google Scholar 

  12. A. P. Pyatakov, A. S. Sergeev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, K. A. Zvezdin, and A. K. Zvezdin, “Micromagnetism and topological defects in magnetoelectric media,” Phys.-Usp. 58, 981–992 (2015).

    Article  CAS  Google Scholar 

  13. I. S. Veshchunov, S. V. Mironov, W. Magrini, V. S. Stolyarov, A. N. Rossolenko, V. A. Skidanov, J.‑B. Trebbia, A. I. Buzdin, Ph. Tamarat, and B. Lounis, “Direct evidence of flexomagnetoelectric effect revealed by single-molecule spectroscopy,” Phys. Rev. Lett. 115, 027601 (2015).

    Article  CAS  Google Scholar 

  14. G. V. Arzamastseva, A. M. Balbashov, F. V. Lisovskii, E. G. Mansvetova, A. G. Temiryazev, and M. P. Temirya-zeva, “Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect,” J. Exp. Theor. Phys. 120, 687–701 (2015).

    Article  CAS  Google Scholar 

  15. D. P. Kulikova, T. T. Gareev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, Z. A. Pyatakova, A. K. Zvezdin, and A. P. Pyatakov, “The mechanisms of electric field-induced magnetic bubble domain blowing,” Phys. Status Solidi RRL 12, 1800066 (2018).

    Article  Google Scholar 

  16. Z. V. Gareeva, R. A. Doroshenko, N. V. Shulga, and K. Harbusch, “Peculiarities of electric polarization in bi-layered longitudinally magnetized ferromagnetic film,” J. Magn. Magn. Mater. 321, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  17. M. J. Donahue and D. G. Porter, OOMMF User’s Guide. Version 1.0 NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999).

    Google Scholar 

  18. M. Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shul’ga.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shul’ga, N.V., Doroshenko, R.A. Hysteresis of the Electric Polarization in a Two-Layer Ferromagnetic Film with a Vortical Distribution of Magnetization. Phys. Metals Metallogr. 121, 526–531 (2020). https://doi.org/10.1134/S0031918X20060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20060137

Keywords:

Navigation