Skip to main content
Log in

Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This work provides a review of the existing micromagnetic models of the interaction of magnetization structures with inhomogeneities with different magnetic properties and geometries. Most attention is paid to models of the interaction of domain walls with defects in thin magnetic films. This work also gives a brief overview of studies of magnetic structures associated with inhomogeneities of systems that are currently being intensively studied, such as antidot arrays in permalloy, cobalt, and composite films, skyrmions and skyrmion lattices, and materials with a granular and porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

Similar content being viewed by others

REFERENCES

  1. A. Hubert and R. Shäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Encyclopedia of Condensed Matter Physics, 3rd ed. (Springer, New York, 1998), p. 686.

    Google Scholar 

  2. J. Zang and A. Hoffmann, Topology in Magnetism, Ed. by J. Zang, V. Cros, and A. Hoffmann (Springer, Berlin, 2018), p. 416.

    Book  Google Scholar 

  3. H. Barkhausen, “Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften,” Phys. Z. 20, No. 17, 401–403 (1919).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, On the Theory of Dispersion of the Magnetic Permeability of Ferromagnetic Bodies, L.D. Landau Collected Works, Ed. by E.M. Lifshits (Nauka, Moscow, 1969), pp. 128–143 [in Russian].

    Google Scholar 

  5. A. A.Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).

    Article  Google Scholar 

  6. W. Brown, Micromagnetics (Wiley, New York, 1963), p. 143.

    Google Scholar 

  7. L. Néel, Influence of Voids and Inclusions on the Coercive Force, Physics of Ferromagnetic Areas, Ed. by S. V. Vonsovskii (Izdatel’stvo Inostrannoi Literatury, Moscow, 1951), pp. 215–239 [in Russian].

  8. J. B. Goodenough, “A theory of domain creation and coercive force in polycrystalline ferromagnetics,” Phys. Rev. 95, No. 4, 917–932 (1954).

    Article  CAS  Google Scholar 

  9. A. Aharoni, E. H. Frei, and S. Shtrikman, “Theoretical approach to the asymmetrical magnetization curve,” J. Appl. Phys. 30, No. 12, 1956–1961 (1959).

    Article  Google Scholar 

  10. W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 105, No. 3, 904–913 (1957).

    Article  CAS  Google Scholar 

  11. H. Kronmuller, “Micromagnetism in amorphous alloys,” IEEE Trans. Magn. 15, No. 5, 1218–1225 (1979).

    Article  Google Scholar 

  12. D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53, No. 3, 1649–1654 (1982).

    Article  CAS  Google Scholar 

  13. D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).

    Article  CAS  Google Scholar 

  14. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).

    Article  CAS  Google Scholar 

  15. OOMMF Project at NIST. https:// math.nist.gov/oommf. Cited August 15, 2020.

  16. B. N. Filippov and M. N. Dubovik, “Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls,” Phys. Solid State 56, No. 5, 967–974 (2014).

    Article  CAS  Google Scholar 

  17. E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, “One-dimensional dynamics of domain walls in a three-layer ferromagnetic structure with different parameters of magnetic anisotropy and exchange,” Fiz. Met. Metalloved. 115, No. 2, 125–131 (2013).

    Google Scholar 

  18. N. I. Noskova, V. V. Shulika, and A. P. Potapov, “On the nature of the hysteresis loop shift in amorphous soft magnetic alloys,” Mater. Trans. 42, No. 8, 1540–1542 (2001).

    Article  CAS  Google Scholar 

  19. M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain boundaries in thin films with in-plane anisotropy and inhomogeneity of saturation magnetization,” Fundamental’nye Problemy Sovremennogo Materialovedeniya 12, No. 4, 408–414 (2015).

    Google Scholar 

  20. M. N. Dubovik, L. G. Korzunin, and B. N. Filippov, “Asymmetrical pinning of vortex domain walls in ferromagnetic films in areas with increased saturation magnetization,” Phys. Met. Metallogr. 116, No. 7, 656–662 (2015).

    Article  Google Scholar 

  21. M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain walls in magnetic films in regions with lowered saturation magnetization,” Phys. Met. Metallogr. 117, No. 4, 329–335 (2016).

    Article  CAS  Google Scholar 

  22. W. Zhu, J. Liao, Z. Zhang, B. Ma, Q. Y. Jin, Y. Liu, Z. Huang, X. Hu, A. Ding, J. Wu, and Y. Xu, “Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire,” Appl. Phys. Lett. 101, No. 8 (2012).

  23. S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, No. 5, 1–10 (2017).

    Article  Google Scholar 

  24. R. L. Novak, P. J. Metaxas, J. P. Jamet, R. Weil, J. Ferré, A. Mougin, S. Rohart, R. L. Stamps, P. J. Zermatten, G. Gaudin, V. Baltz, and B. Rodmacq, “Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential,” J. Phys. D: Appl. Phys. 48, No. 23, 1–12 (2015).

    Article  CAS  Google Scholar 

  25. M. N. Dubovik and B. N. Filippov, “Influence of asymmetric pinning of vortex domain boundaries on the magnetization curve of films with plane anisotropy,” Fiz. Met. Metalloved. 118, No. 5, 464–468 (2017).

    Google Scholar 

  26. I. M. Izmozherov, E. Zh. Baikenov, M. N. Dubovik, and B. N. Filippov, “The influence of loop geometry on the asymmetric pinning of domain walls in films with uniaxial anisotropy,” Phys. Met. Metallogr. 119, No. 8, 713–719 (2018).

    Article  CAS  Google Scholar 

  27. V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Static structures,” Fiz. Met. Metalloved. 114, No. 2, 120–128 (2013).

    CAS  Google Scholar 

  28. V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Dynamics and structural rearrangements,” Phys. Met. Metallogr. 114, No. 2, 129–135 (2013).

    CAS  Google Scholar 

  29. C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic antidot nanostructures: Effect of lattice geometry,” Nanotechnology 17, No. 6, 1629–1636 (2006).

    Article  CAS  Google Scholar 

  30. N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, “Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry,” Appl. Phys. Lett. 96, No. 12, 17–20 (2010).

    Article  CAS  Google Scholar 

  31. C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, “Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxide-assisted self-assembly of polystyrene nanospheres,” Appl. Phys. Lett. 96, No. 12, 1–3 (2010).

    Article  Google Scholar 

  32. F. Fettar, L. Cagnon, and N. Rougemaille, “Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays,” Appl. Phys. Lett. 97, No. 19, 1–3 (2010).

    Article  CAS  Google Scholar 

  33. C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, “The magnetic anisotropy and domain structure of permalloy antidot arrays,” J. Appl. Phys. 87, No. 9, 6322–6324 (2000).

    Article  CAS  Google Scholar 

  34. C. Yu, M. J. Pechan, and G. J. Mankey, “Dipolar induced, spatially localized resonance in magnetic antidot arrays,” Appl. Phys. Lett. 83, No. 19, 3948–3950 (2003).

    Article  CAS  Google Scholar 

  35. D. Tripathy, P. Vavassori, J. M. Porro, A. O. Adeyeye, and N. Singh, “Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures,” Appl. Phys. Lett. 97, No. 4, 95–98 (2010).

    Article  CAS  Google Scholar 

  36. S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler, “Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels,” Phys. Rev. B 86, No. 1, 1–12 (2012).

    Article  CAS  Google Scholar 

  37. J. Ding, D. Tripathy, and A. O. Adeyeye, “Effect of antidot diameter on the dynamic response of nanoscale antidot arrays,” J. Appl. Phys. 109, No. 7, 1–4 (2011).

    Article  Google Scholar 

  38. A. Toporov, R. M. Langford, and A. K. Petford-Long, “Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays,” Appl. Phys. Lett. 77, No. 19, 3063–3065 (2000).

    Article  CAS  Google Scholar 

  39. L. Torres, L. Lopez-Diaz, and J. Iñiguez, “Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage,” Appl. Phys. Lett. 73, No. 25, 3766–3768 (1998).

    Article  CAS  Google Scholar 

  40. R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett. 70, No. 17, 2309–2311 (1997).

    Article  CAS  Google Scholar 

  41. Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, “Nickel antidot arrays on anodic alumina substrates,” Appl. Phys. Lett. 81, No. 15, 2869–2871 (2002).

    Article  CAS  Google Scholar 

  42. D. Navas, M. Hernández-V́lez, M. Vázquez, W. Lee, and K. Nielsch, “Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy,” Appl. Phys. Lett. 90, No. 19, 1–4 (2007).

    Article  CAS  Google Scholar 

  43. R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K. Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices,” ACS Nano 6, No. 4, 3397–3403 (2012).

    Article  CAS  Google Scholar 

  44. C. Castán-Guerrero, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé, L. A. Rodríguez, C. Magén, F. Kronast, P. Gawronski, O. Chubykalo-Fesenko, K. J. Merazzo, P. Vavassori, P. Strichovanec, J. Sesé, and L. M. García, “Magnetic antidot to dot crossover in Co and Py nanopatterned thin films,” Phys. Rev. B 89, No. 14, 1–10 (2014).

    Article  CAS  Google Scholar 

  45. S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodríguez-Suárez, “Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder,” J. Phys. D: Appl. Phys. 47, No. 33, 1–8 (2014).

    Article  CAS  Google Scholar 

  46. A. Barman, “Control of magnonic spectra in cobalt nanohole arrays: The effects of density, symmetry and defects,” J. Phys. D: Appl. Phys. 43, No. 19, 1–7 (2010).

    Article  Google Scholar 

  47. C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic and transport properties of multilayer nanoscale antidot arrays,” Appl. Phys. Lett. 88, No. 22, 1–4 (2006).

    Google Scholar 

  48. F. J. Castaño, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, “Anisotropy and magnetotransport in ordered magnetic antidot arrays,” Appl. Phys. Lett. 85, No. 14, 2872–2874 (2004).

    Article  CAS  Google Scholar 

  49. A. O. Adeyeye, M. T. Win, T. A. Tan, G. S. Chong, V. Ng, and T. S. Low, “Planar Hall effect and magnetoresistance in Co/Cu multilayer films,” Sens. Actuators, A 116, No. 1, 95–102 (2004).

    Article  CAS  Google Scholar 

  50. X. K. Hu, S. Sievers, A. Muller, V. Janke, and H. W. Schumacher, “Classification of super domains and super domain walls in permalloy antidot lattices,” Phys. Rev. B 84, No. 2, 2–7 (2011).

    Article  Google Scholar 

  51. X. K. Hu, S. Sievers, A. Muller, and H. W. Schumacher, “The influence of individual lattice defects on the domain structure in magnetic antidot lattices,” J. Appl. Phys. 113, No. 10, 1–6 (2013).

    Article  Google Scholar 

  52. S. Mallick, S. S. Mishra, and S. Bedanta, “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy,” Sci. Rep. 8, No. 1, 1–8 (2018).

    Article  CAS  Google Scholar 

  53. L. J. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, R. J. Matelon, U. G. Volkmann, and P. Fischer, “Magnetization reversal in cobalt antidot arrays,” Phys. Rev. B 73, No. 21, 1–12 (2006).

    Article  CAS  Google Scholar 

  54. N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices, J. Phys. D: Appl. Phys.” 50, No. 2, 025004 (2017).

    Article  CAS  Google Scholar 

  55. Y. Liu and A. Du, “Arrangement effects of triangular defects on magnetization reversal process in a permalloy dot,” J. Met., Mater. Miner. 323, 461–464 (2011).

    CAS  Google Scholar 

  56. Y. H. Liu and Y. Q. Li, “A mechanism to pin skyrmions in chiral magnets,” J. Phys.: Condens. Matter. 25, No. 7, 1–8 (2013).

    CAS  Google Scholar 

  57. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442, No. 7104, 797–801 (2006).

    Article  CAS  Google Scholar 

  58. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915–919 (2009).

    Article  CAS  Google Scholar 

  59. A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotechnol. 8, No. 3, 152–156 (2013).

    Article  CAS  Google Scholar 

  60. X. Zhang, M. Ezawa, and Y. Zhou, “Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions,” Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  61. M. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Met., Mater. Miner. 396, 338–344 (2015).

    CAS  Google Scholar 

  62. R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, No. 3, 319–325 (2019).

    Article  CAS  Google Scholar 

  63. C. Song, C. Jin, H. Xia, Y. Ma, J. Wang, J. Wang, and Q. Liu, “Interaction between defect and skyrmion in nanodisk,” http://arxiv.org/abs/2005.03385.

  64. J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1–8 (2013).

    Article  CAS  Google Scholar 

  65. C. Deger, I. Yavuz, and F. Yildiz, “Current-driven coherent skyrmion generation,” Sci. Rep. 9, No. 1, 1–8 (2019).

    Article  CAS  Google Scholar 

  66. A. Michels, S. Erokhin, D. Berkov, and N. Gorn, “Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites,” J. Met., Mater. Miner. 350, 55–68 (2014).

    CAS  Google Scholar 

  67. S. Erokhin and D. Berkov, “Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains,” Phys. Rev. Appl. 7, No. 1, 1–15 (2017).

    Article  Google Scholar 

  68. P. N. Solovev, A. V. Izotov, and B. A. Belyaev, “Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films,” J. Sib. Fed. Univ., Math. Phys. 9, No. 4, 524–527 (2016).

    Google Scholar 

  69. M. Menarini, M. V. Lubarda, R. Chang, S. Li, S. Fu, B. Livshitz, and V. Lomakin, “Micromagnetic simulator for complex granular systems based on Voronoi tessellation,” J. Met., Mater. Miner. 482, 350–357 (2019).

    CAS  Google Scholar 

  70. N. A. Balakirev and V. A. Zhikharev, “Computer simulation of growth and magnetic properties of quasi 2D magnetic cluster,” Magn. Reson. Solids 17, No. 2, 1–6 (2015).

    Google Scholar 

Download references

Funding

This work was carried out within the state assignment of the Ministry of Education and Science of the Russian Federation, topics “Magnet” no. AAAA-A18-118020290129-5 and “Alloys” no. AAAA-A19-119070890020-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Korzunin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzunin, L.G., Izmozherov, I.M. Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures. Phys. Metals Metallogr. 122, 169–196 (2021). https://doi.org/10.1134/S0031918X21030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21030091

Keywords:

Navigation