Skip to main content
Log in

Effects of ECAP with One Pass Severe Deformation on Microhardness, Texture, and Corrosion Behavior of AA1370 Aluminum Alloy Wire

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this paper, We investigate the effects of one pass severe deformation, obtained by equal channel angular pressing (ECAP) process, using dies with channel angles of 90° and 120°, on hardness, texture, and corrosion behavior, of AA1370 aluminum alloy wire. A severe deformation, by ECAP process, leads to athinning of several diffraction peaks and an increase of their angular values; modifies the texture of material from pseudo-texture to mix texture; reduces the microhardness; modifies a part of localized corrosion towards generalized one; shifts the corrosion potential to negative values; and increases the values of open circuit potential (OCP). The deformation by ECAP process induces fragmentation of parts of intermetallic particles, and reduction of grains size. The imprisoned air, between the channel wall of the die and the wire, creates microporosities in the deformed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. Zazi, “Effect of heat treatments on the microstructure, hardness and corrosion behavior of nondendritic AlSi9Cu3(Fe) cast alloy,” Mater. Sci. 19, No. 3, 258–263 (2013).

    Google Scholar 

  2. R. Gravina, C. Josse, B. Viguier, A. Laurino, J. Alexis, A. E. Hughes, and C. Blanc, “Corrosion behaviour of AA 1370 strands for wires: Identification of the critical metallurgical parameters,” Corros. Sci. 134, 112–121 (2018).

    Article  CAS  Google Scholar 

  3. G. Nurislamova, X. Sauvage, M-Y. Murashkin, R. Islamgaliev, and R. Valiev, “Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation,” Philos. Mag. Lett. 88, No. 6, 459–466 (2008).

    Article  CAS  Google Scholar 

  4. A. S. Khan and C. S. Meredith, “Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP),” Int. J. Plast. 26, No. 2, 189–203 (2010).

    Article  CAS  Google Scholar 

  5. S. N. Lezhnev, I. E. Vokitina, and D. V. Kuis, “Evolution of microstructure and mechanical properties of composite aluminum-based alloy during ECAP,” Phys. Met. Metallogr. 119, No. 8, 810–815 (2018).

    Article  CAS  Google Scholar 

  6. A. P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T. G. Langdon, “Wear resistance and electroconductivity in copper processed by severe plastic deformation,” Wear 305, Nos. 1–2, 89–99 (2013).

    Article  CAS  Google Scholar 

  7. C. Xu and T. G. Langdon, “Influence of a round corner die on flow homogeneity in ECA pressing,” Scr. Mater. 48, No. 1, 1–4 (2003).

    Article  CAS  Google Scholar 

  8. M. Yu., Murashkin, E. V. Bobruk, A. R. Kil’mametov, and R. Z. Valiev, “Structure and mechanical properties of aluminum alloy 6061 subjected to equal-channel angular pressing in parallel channels,” Phys. Met. Metallogr. 108, No. 4, 415–423 (2009).

    Article  Google Scholar 

  9. K. Hajizadeh, S. Ejtemaei, B. Eghbali, and K. J. Kurzydlowski, “Microstructure and mechanical properties of 1050 aluminum after the combined processes of constrained groove pressing and cold rolling,” Phys. Met. Metallogr. 121, No. 1, 72–77 (2020).

    Article  CAS  Google Scholar 

  10. M. Š. Musa and Z. Schauperl, “ECAP–New consolidation method for production of aluminium matrix composites with ceramic reinforcement,” Process. Appl. Ceram. 7, No. 2, 63–68 (2013).

    Article  CAS  Google Scholar 

  11. J. R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, Ohio, 1999).

    Book  Google Scholar 

  12. D. Song, A-b. Ma., J-H. Jiang, P-H. Lin, and D.‑H. Yang, “Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP,” Trans. Nonferrous Met. Soc. China 19, No. 5, 1065–1070 (2009).

    Article  CAS  Google Scholar 

  13. K. Gopala Krishna, K. Sivaprasad, T. S. N. Sankara Narayanan, and K. C. Hari Kumar, “Localized corrosion of an ultrafine grained Al–4Zn–2Mg alloy produced by cryorolling,” Corros. Sci. 60, 82–89 (2012).

    Article  CAS  Google Scholar 

  14. K. D. Ralston, N. Birbilis, and C. H. J. Davies, “Revealing the relationship between grain size and corrosion rate of metals,” Scr. Mater. 63, No. 12, 1201–1204 (2010).

    Article  CAS  Google Scholar 

  15. Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon, “Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties,” Metall. Mater. Trans. A 31, No. 3, 691–701 (2000).

    Article  Google Scholar 

  16. J.G. Brunner, N. Birbilis, K. D. Ralston, and S. C. Virtanen, “Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024,” Corros. Sci. 57, 209–214 (2012).

    Article  CAS  Google Scholar 

  17. I-J. Son, H. Nakano, S. Oue, S. Kobayashi, H. Fukushima, and Z. Horita, “Effect of equal-channel angular pressing on pitting corrosion resistance of anodized aluminum-copper alloy,” Trans. Nonferrous Met. Soc. China 19, No. 4, 904–908 (2009).

    Article  CAS  Google Scholar 

  18. C. Banjongprasert, A. Jak-Ra, C. Domrong, U. Patakham, W. Pongsaksawad, and T. Chairuangsri, “Characterization of an equal channel angular pressed Al–Zn–In alloy,” Arch. Metall. Mater. 60, No. 2, 887–890 (2015).

    Article  CAS  Google Scholar 

  19. C. M. Allena, Kaq. O’Reilly, B. Canto, and P. V. Evans, “Intermetallic phase selection in 1XXX Al alloys,” Prog. Mater. Sci. 43, No. 2, 89–170 (1998).

    Article  Google Scholar 

  20. B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries, “An assessment of the entire Al–Fe system including D03 ordering,” Acta Mater. 57, No. 10, 2896–2908 (2009).

    Article  CAS  Google Scholar 

  21. Z. Szklarska-Smialowska, ”Pitting corrosion of aluminum,” Corros. Sci. 41, No. 9, 1743–1767 (1999).

    Article  CAS  Google Scholar 

  22. W.R. Osório, L. C. Peixoto, P. R. Goulart, and A. Garcia, “Electrochemical corrosion parameters of as-cast Al–Fe alloys in a NaCl solution,” Corros. Sci. 52, No. 9, 2979–2993 (2010).

    Article  Google Scholar 

  23. I. C. Noyan and J. B. Cohen, “Residual stress–measurement by diffraction and interpretation, Book Review, ” Cryst. Res. Technol. 24, No. 2, K37 (1989).

    Article  Google Scholar 

  24. U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, “Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction,” J. Appl. Crystallogr. 38, No. 1, 1–29 (2005).

    Article  Google Scholar 

  25. A. Baczmanski, P. Lipinski, A. Tidu, K. Wierzbanowski, and B. Pathiraj, “Quantitative estimation of incompatibility stresses and elastic energy stored in ferritic steel,” J. Appl. Crystallogr. 41, No. 5, 854–867 (2008).

    Article  CAS  Google Scholar 

  26. T. H. De Keijser, J. I. Langford, E. J. Mittemeijer, and A. B. P. Vogels, “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Crystallogr. 15, No. 3, 308–314 (1982).

    Article  CAS  Google Scholar 

  27. M. Marciszko, A. Baczmański, K. Wierzbanowski, M. Wrobel, C. Braham, J.-P. Chopart, A. Lodini, J. Bonarski, L. Tarkowski, and N. Zazi, “Application of multireflection grazing incidence method for stress measurements in polished Al–Mg alloy and CrN coating,” Appl. Surf. Sci. 266, 256–267 (2013).

    Article  CAS  Google Scholar 

  28. L. Muresan, L. Oniciu, M. Froment, and G. Maurin, “Inhibition of lead electrocrystallization by organic additives,” Electrochim. Acta 37, No. 12, 2249–2254 (1992).

    Article  CAS  Google Scholar 

  29. N. Zazi, J. P. Chopart, and A. Bilek, “Corrosion behavior and the weak-magnetic-field effect of aluminum packaging paper,” Mater. Technol. 50, No. 2, 165–173 (2016).

    CAS  Google Scholar 

  30. A. Urrutia, S. Tumminello, D. G. Lamas, and S. Sommadossi, “X-Ray Characterization of Intermetallic Phases in Al/Ni Multilayer System,” International Congress of Science and Technology of Metallurgy and Materials, SAM—CONAMET 2013, Procedia Mater. Sci., No. 8, 1150 (2015).

  31. R. Ambat, A. J. Davenport, G. M. Scamans, and A. Afseth, “Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium,” Corros. Sci. 48, No. 11, 3455–3471 (2006).

    Article  CAS  Google Scholar 

  32. J. O. Park, C.-H. Paik, and R. C. Alkire, “Scanning microsensors for measurement of local pH distributions at the microscale,” J. Electrochem. Soc. 143, No. 8, 174 (1996).

    Article  Google Scholar 

  33. O. Seri and M. Imaizumi, “The dissolution of FeAl3 intermetallic compound and deposition on aluminum in AlCl3 solution,” Corros. Sci. 30, No. 11, 1121–1131 (1990).

    Article  CAS  Google Scholar 

  34. M. Murayama, Z. Horita, and K. Hono, “Microstructure of two-phase Al–1.7 at % Cu all y deformed by equal-channel angular pressing,” Acta Mater. 49, No. 1, 21–29 (2001).

    Article  CAS  Google Scholar 

  35. Z. Horita, K. Oh-ishi, and K. Kaneko, “Microstructure control using severe plastic deformation,” Sci. Technol. Adv. Mater. 7, No. 7, 649–654 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacer Zazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youcef Hadj Ali, Zazi, N., Durmus, H. et al. Effects of ECAP with One Pass Severe Deformation on Microhardness, Texture, and Corrosion Behavior of AA1370 Aluminum Alloy Wire. Phys. Metals Metallogr. 122, 1382–1390 (2021). https://doi.org/10.1134/S0031918X20140021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20140021

Keywords:

Navigation