Skip to main content
Log in

The Role of Shear Waves in Electron–Phonon Drag in Potassium Crystals at Low Temperatures

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of anisotropy of elastic energy on the electron–phonon drag and thermoelectric phenomena in potassium crystals at low temperatures is investigated in this work. The standard theory of deformation potential is used for longitudinal components of elastic modes. The effect of shear waves on the drag thermoelectric power is taken into account. By comparing the results of calculating the thermoelectric power and lattice thermal conductivity with experimental data, the electron–phonon interaction constant for the shear components of vibrational modes is determined. It is an order of magnitude smaller than for the longitudinal components. It is shown that shear waves make a significant contribution to both the electron–phonon relaxation and the drag thermoelectric power. This contribution is from 28 to 40% of the total drag thermoelectric power for various samples and is four to six times higher than the contribution from longitudinal phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. I. Kuleev and I. G. Kuleev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018).

    Article  Google Scholar 

  2. I. I. Kuleev and I. G. Kuleev, “Role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 129, 46–58 (2019).

    Article  Google Scholar 

  3. I. I. Kuleev and I. G. Kuleev,” Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation,” J. Phys.: Condens. Matter 31, 375701(13 pp) (2019).

  4. I. I. Kuleev and I. G. Kuleev, “Effect of anisotropy of elastic energy on the electron–phonon drag and temperature dependences of thermal emf in potassium crystals at low temperatures,” Phys. Met. Metallogr. 120, 1033–1039 (2019).

    Article  CAS  Google Scholar 

  5. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Focusing of Phonons and Phonon Transport in Single Crystal Nanostructures, (Izdatel’stvo UMTs UPI, Yekaterinburg, 2018) [in Russian].

  6. D. K. C. MacDonald, W. B. Pearson and I. M. Templeton, “Thermo-electricity at low temperatures. VIII. Thermo-electricity of the alkali metals below 2 K,” Proc. R. Soc. London, Ser. A 256, 334–358 (1960).

    Article  CAS  Google Scholar 

  7. A. M. Guenault and D. K. C. MacDonald, “Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures,” Proc. R. Soc. London, Ser. A 264, 41–59 (1961).

    Article  CAS  Google Scholar 

  8. M. R. Stinson, R. Fletcher, and C. R. Leavens, “Thermomagnetic and thermoelectric properties of potassium,” Phys. Rev. B 20, 3970–3990 (1979).

    Article  CAS  Google Scholar 

  9. R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987).

    Article  CAS  Google Scholar 

  10. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum press, New York, 1976), p. 264.

    Book  Google Scholar 

  11. J. M. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids (Oxford, 2001).

  12. F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, 1968).

    Google Scholar 

  13. J. M. Zyman, “The thermoelectric power of the alkali metals at low temperatures,” Philos. Mag. 4, 371–379 (1959).

    Article  Google Scholar 

  14. C. Herring and E. Vogt, “Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering,” Phys. Rev. 101, 944–961 (1956).

    Article  CAS  Google Scholar 

  15. P. Yu. M. Kardona, Fundamentals of Physics of Semiconductors (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  16. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).

    Google Scholar 

  17. I. G. Kuleev and I. I. Kuleev, “Elastic waves in cubic crystals with positive or negative anisotropy of second-order elastic moduli,” Phys. Solid State 49, no. 3, 437–444 (2007).

    Article  CAS  Google Scholar 

  18. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969), p. 307.

    Google Scholar 

  19. L. E. Gurevich, “Thermoelectric properties of semiconductors. I,” Zh. Eksp. Teor. Fiz. 16, 193 (1946).

    CAS  Google Scholar 

  20. C. Herring, “Theory of the thermoelectric power of semiconductors,” Phys. Rev. 96, 1163 (1954).

    Article  CAS  Google Scholar 

  21. L. E. Gurevich and I. Ya. Korenblit, Influence of electron dragging by phonons and their mutual dragging on the kinetic coefficients of semimetals,” Fiz. Tverd. Tela 6, 856–863 (1964).

    CAS  Google Scholar 

  22. J. W. Ekin and B. W. Maxfield, “Electrical resistivity of potassium from 1 to 25 K,” Phys. Rev. B 4, 4215–4225 (1971).

    Article  Google Scholar 

Download references

Funding

This work was carried out within a state assignment from the Ministry of Education and Science of the Russian Federation (topic “Function”, no. AAAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleev, I.I., Kuleev, I.G. The Role of Shear Waves in Electron–Phonon Drag in Potassium Crystals at Low Temperatures. Phys. Metals Metallogr. 121, 921–928 (2020). https://doi.org/10.1134/S0031918X20100063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20100063

Keywords:

Navigation