Skip to main content
Log in

Effect of Anisotropy of Elastic Energy on the Electron–Phonon Drag and Temperature Dependences of Thermal EMF in Potassium Crystals at Low Temperatures

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of anisotropy of elastic energy on electron–phonon drag and thermoelectric phenomena in potassium crystals is studied. The temperature dependences of the thermal conductivity, thermal emf, and contributions to them from phonons of different polarizations are calculated. The calculation results are matched to the experimental data by varying the electron–phonon interaction constant for quasi-transverse phonons. It is established that the contribution of slow quasi-transverse phonons to the drag thermal emf of bulk potassium crystals is by an order of magnitude greater than the contribution of quasi-longitudinal phonons. The maximum values of the drag thermal emf in perfect potassium crystals are determined. It is shown that they do not depend on the electron–phonon interaction constants, but are determined by the second-order elastic moduli and the electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton, “Thermo-electricity at low temperatures. VIII. Thermo-electricity of the alkali metals below 2 K,” Proc. R. Soc. Lond., Ser. A 256, 334 (1960).

  2. A. M. Guenault and D. K. C. MacDonald, “Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures,” Proc. R. Soc. Lond., Ser. A 264, 41 (1961).

  3. M. R. Stinson, R. Fletcher, and C. R. Leavens, “Thermomagnetic and thermoelectric properties of potassium,” Phys. Rev. B 20, 3970–3990 (1979).

    Article  CAS  Google Scholar 

  4. R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987).

    Article  CAS  Google Scholar 

  5. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum, London, 1976).

    Book  Google Scholar 

  6. J. M. Ziman, Electrons and Phonons (Oxford, 1960) [in Russian].

    Google Scholar 

  7. F. Blatt, Physics of Electronic Conductivity in Solids (Izd-vo IL, Moscow, 1971) [in Russian].

    Google Scholar 

  8. L. E. Gurevich, “Thermoelectric properties of conductors,” Zh. Eksp. Teor. Fiz. 16, 193 (1946).

    CAS  Google Scholar 

  9. C. Herring, “Theory of the thermoelectric power of semiconductors,” Phys. Rev. 96, 1163 (1954).

    Article  CAS  Google Scholar 

  10. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport in Single-Crystal Nanostructures (UMTs UPI, Yekaterinburg, 2018) [in Russian].

  11. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).

    Google Scholar 

  12. I. G. Kuleev and I. I. Kuleev, “Elastic waves in cubic crystals with positive or negative anisotropy of second-order elastic moduli,” Phys. Solid State 49, No. 3, 437–444 (2007).

    Article  CAS  Google Scholar 

  13. I. G. Kuleev and I. I. Kuleev, “The role of quasi-longitudinal and quasi-transverse phonons in the thermoelectric power of entrainment of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 155, No. 6, 56–70 (2019).

    Google Scholar 

  14. B. Truel, C. Elbaum, and B. B. Chick, “Ultrasonic methods in solid state physics,” (Academic, New York–London, 1969).

  15. I. I. Kuleev and I. G. Kuleev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018).

    Article  Google Scholar 

  16. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, “Phonon focusing and electron–phonon drag in semiconductor crystals with degenerate charge-carrier statistics,” J. Exp. Theor. Phys. 150, 567–585 (2016).

    Google Scholar 

  17. L. E. Gurevich and I. Ya. Korenblit, “The influence of electron drag by phonons and their mutual drag on kinetic coefficients of semimetals,” Fiz. Tverd. Tela 6, 856–863 (1964).

    CAS  Google Scholar 

  18. G. D. Mahan, L. Lindsay, and D. A. Broido, “The Seebeck coefficient and phonon drag in silicon,” J. Appl. Phys. 116, 245 102 (2014).

    Article  Google Scholar 

  19. J. W. Ekin and B. W. Maxfield, “Electrical resistivity of potassium from 1 to 25° K,” Phys. Rev. B 4, 4215–4225 (1971).

    Article  Google Scholar 

  20. A. P. Zhernov and A. V. Inyushkin, Isotopic Effects in Solids (RNTs Kurchatovskii Institut, Moscow, 2001) [in Russian].

  21. P. G. Klemens, “The scattering of low-frequency lattice waves by static imperfections,” Proc. Phys. Soc. Sect. A 68, No. 12, 1113–1128 (1955).

    Article  Google Scholar 

Download references

Funding

This work was carried out within a state task from the Ministry of Education and Science of the Russian Federation (topic “Function” AAAA-A19-119012990095-0 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kuleev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleev, I.I., Kuleev, I.G. Effect of Anisotropy of Elastic Energy on the Electron–Phonon Drag and Temperature Dependences of Thermal EMF in Potassium Crystals at Low Temperatures. Phys. Metals Metallogr. 120, 1033–1039 (2019). https://doi.org/10.1134/S0031918X19110103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19110103

Keywords:

Navigation