Skip to main content
Log in

Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This review article is devoted to studies of the structure and properties of Fe–Ga alloys that serve as functional materials with high magnetostriction. Particular attention is paid to diffraction methods that allow one both to monitor phase transformations in real time and identify phase structures and microheterogeneities in their structure. Based on the studies published in recent decades, the existing equilibrium diagrams and mechanisms of formation of elastic and anelastic properties, including magnetostriction and internal friction, are critically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.

Similar content being viewed by others

Notes

  1. See the online version for the color diagrams.

REFERENCES

  1. N. Kawamiya, K. Adachi, and Yo. Nakamura, “Magnetic properties and Mossbauer investigations of Fe–Ga alloys,” J. Phys. Soc. Jpn. 33, 1318–1327 (1972).

    Article  CAS  Google Scholar 

  2. A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, “Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys,” IEEE Trans. Magn. 36, 3238 (2000).

    Article  CAS  Google Scholar 

  3. A. E. Clark, Magnetostrictive Rare Earth-Fe2Compounds. Ferromagnetic Materials, Ed. by E. P. Wohlfarth (North-Holland Publishing Company, Amsterdam, 1980), vol. 1, ch. 7, pp. 531–589.

    Google Scholar 

  4. A. G. Khachaturyan and D. Viehland, “Structurally heterogeneous model of extrinsic magnetostriction for fe-ga and similar. Magnetic alloys: Part I. Decomposition and confined displacive transformation,” Metall. Mater. Trans. A 38, 2308–2316 (2007).

    Article  CAS  Google Scholar 

  5. O. Kubaschewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982).

    Google Scholar 

  6. W. Köster and T. Gödecke, “Uber den Aufbau des Systems Eisen-Gallium zwischen 10 und 50 at % Ga und dessen Abhandidkeit von der Warme behandlung. I. Das Diagramm der raumzentrierten Phasen,” Z. Metallkd. 68, 582–589 (1977).

    Google Scholar 

  7. W. Köster and T. Gödeke, “Uber den Aufbau des Systems Eisen-Gallium zwischen 10 und 50 at % Ga und dessen Abhandidkeit von der Warme behandlung. II. Das Gleichgewichtsdiagramm,” Z. Metallkd. 68, 758–764 (1977).

    Google Scholar 

  8. W. Köster and T. Gödeke, “Uber den Aufbau des Systems Eisen-Gallium zwischen 10 und 50 at % Ga und dessen Abhandidkeit von der Warme behandlung. III. Ein Unterkuhlungsdiagramm und Diagramme fur die Vorgange biem Anlassen ofengekuhlter und absgeschreckter Legierungen,” Z. Metallkd. 68, 661–668 (1977).

    Google Scholar 

  9. C. Dasarathy, “Order-disorder change in Fe–Ga alloys,” J. Iron Steel Inst. 202, 51 (1964).

    CAS  Google Scholar 

  10. J. Bras, J. Couderc, M. Fagot, and J. Ferre, “Transformation ordered-disordered solution in Fe–Ga,” J. Acta Metall. 25, 1077–1084 (1977).

    Article  CAS  Google Scholar 

  11. H. Okamoto, “Fe–Ga (Iron–Gallium),” in Phase Diagrams of Binary Iron Alloys, Ed. by H. Okamoto (ASM International, Materials Park, 1993), pp. 51–147.

    Google Scholar 

  12. I. S. Golovin, V. Palacheva, A. Mohamed, A. Balagurov, I. Bobrikov, N. Samoylova, and S. Sumnikov, “Phase transitions in metastable Fe–Ga alloys,” SENSORDEVICES 2019, The Tenth International Conference on Sensor Device Technologies and Applications. (Iaria, 2019), pp. 13–16.

  13. O. Ikeda, R. Kainuma, and I. Ohinuma, “Phase equilibria and stability of ordered bcc phases in the Fe-rich portion of the Fe–Ga system,” J. Alloys Compd. 347, 198–205 (2002).

    Article  Google Scholar 

  14. I. S. Golovin, A. M. Balagurov, I. A. Bobrikov, S. V. Sumnikov, and A. K. Mohamed, “Cooling rate as a tool of tailoring structure of Fe–(9–33%)Ga alloys,” Intermetallics 114, 106 610 (2019).

    Article  CAS  Google Scholar 

  15. A. K. Mohamed, V. V. Palacheva, V. V. Cheverikin, E. N. Zanaeva, W. C. Cheng, V. Kulitckii, S. Divinski, G. Wilde, and I. S. Golovin, “The Fe-Ga phase diagram: revisited,” J. Alloys Compd. (2020. under review).

  16. J. Zhang, T. Ma, and M. Yan, “Anomalous phase transformation in magnetostrictive Fe81Ga19 alloy,” J. Magn. Magn. Mater. 322, No. 19, 2882–2887 (2010).

    Article  CAS  Google Scholar 

  17. J. Zhang, T. Ma, and M. Yan, “Magnetic force microscopy study of heat-treated Fe81Ga19 with different cooling rates,” Phys. B 405, No. 15, 3129–3134 (2010).

    Article  CAS  Google Scholar 

  18. T. Jin, H. Wang, I. S. Golovin, and C. Jiang, “Microstructure investigation on magnetostrictive Fe100 – xGax and (Fe100 – xGax)99.8Tb0.2 alloys for 19 ≤ x ≤ 29,” Intermetallics 115, 106 628 (2019).

    Article  CAS  Google Scholar 

  19. J. P. Joule, “On the effects of magnetism upon the dimensions of iron and steel bars,” Philos. Mag. 30, 76–87 (1847).

    Google Scholar 

  20. K. P. Belov, Magnetostriction Phenomena and Their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  21. K. P. Belov, Magnetic Transformations (Gosudarstvennoe Izdatel’stvo Fiziko-Matematicheskoi Literatury, Moscow, 1959) [in Russian].

    Google Scholar 

  22. K. P. Belov, Rare Earth Magnetics and Their Applications (Moscow, 1980) [in Russian].

    Google Scholar 

  23. U. Atzmony, M. P. Dariel, and G. Dublon, “Spin-orientation diagram of the pseudobinary TbxDy1 – xFe2 Laves compounds,” Phys. Rev. 15, 3565 (1972).

    Article  Google Scholar 

  24. J. H. Liu, C. B. Jiang, and H. B. Xu, “Giant magnetostrictive materials,” Sci. China, Ser. E: Technol. Sci. 55, 1319 (2012).

    Google Scholar 

  25. U. Atzmony, M. P. Dariel, E. R. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, “Magnetic anisotropy and spin rotations in HoxTb1 – xFe2 cubic Laves compounds,” Phys. Rev. Lett. 28, 244 (1972).

    Article  CAS  Google Scholar 

  26. E. M. Summers, T. A. Lograsso, and M. Wun-Fogle, “Magnetostriction of binary and ternary Fe–Ga alloys,” J. Mater. Sci. 42, 9582–9594 (2007).

    Article  CAS  Google Scholar 

  27. H. D. Chopra and M. Wuttig, “Non-Joulian magnetostriction,” Nature 521, 340–343 (2015).

    Article  CAS  Google Scholar 

  28. Y. He, C. Jiang, W. Wu, B. Wang, H. Duan, H. Wang, T. Zhang, J. Wang, J. Liu, Z. Zhang, P. Stamenov, J. M. D. Coey, and H. Xu, “Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping,” Acta Mater. 109, 177–186 (2016).

    Article  CAS  Google Scholar 

  29. Y. He, C. Jiang, J. M. D. Coey, and H. Xu, “Joulian magnetostriction of Galfenol Fe83Ga17,” J. Magn. Magn. Mater. 466, 351–353 (2018).

    Article  CAS  Google Scholar 

  30. S. Guruswamy, N. Srisukhumbowornchai, A. E. Clark, J. B. Restorff, and M. Wun-Fogle, “Strong, ductile, and low-field-magnetostrictive alloys based on Fe–Ga,” Scr. Mater. 43, No. 3, 239–244 (2000).

    Article  CAS  Google Scholar 

  31. Y. N. Zhang, J. X. Cao, and R. Q. Wu, “Rigid band model for prediction of magnetostriction of iron-gallium alloys,” Appl. Phys. Lett. 96, 062 508 (2010).

    Article  CAS  Google Scholar 

  32. Y. N. Zhang, H. Wang, and R. Q. Wu, “First-principles determination of the rhombohedral magnetostriction of Fe100 – xAlx and Fe100 – xGax alloys,” Phys. Rev. B 86, 224 410 (2012).

    Article  CAS  Google Scholar 

  33. H. Wang, Y. N. Zhang, R. Q. Wu, L. Z. Sun, D. S. Xu, and Z. D. Zhang, “Understanding strong magnetostriction in Fe100 – xGax alloys,” Sci. Rep. 3, 3521 (2013).

    Article  Google Scholar 

  34. A. E. Clark, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, and J. R. Cullen, “Effect of quenching on the magnetostriction of Fe1 – xGax (0.13 < x < 0.21),” IEEE Trans. Magn. 37, 2678–2680 (2001).

    Article  CAS  Google Scholar 

  35. M. Wuttig, L. Dai, and J. Cullen, “Elasticity and magnetoelasticity of Fe–Ga solid solutions,” Appl. Phys. Lett. 80, 1135–1137 (2002).

    Article  CAS  Google Scholar 

  36. T. A. Lograsso, A. R. Ross, D. L. Schlagel, A. E. Clark, and M. Wun-Fogle, “Structural transformations in quenched Fe–Ga alloys,” J. Alloys Compd. 350, 95–101 (2003).

    Article  CAS  Google Scholar 

  37. A. G. Khachaturyan and D. Viehland, “Structurally heterogeneous model of extrinsic magnetostriction for Fe–Ga and similar magnetic alloys. Part II,” Metall. Mater. Trans. A 38, 2317–2328 (2007).

    Article  CAS  Google Scholar 

  38. T. Y. Ma, S. S. Hu, G. H. Bai, M. Yan, Y. H. Lu, H. Y. Li, X. L. Peng, and X. B. Ren, “Structural origin for the local strong anisotropy in melt-spun Fe–Ga–Tb: Tetragonal nanoparticles,” Appl. Phys. Lett. 106, 112 401 (2015).

    Article  CAS  Google Scholar 

  39. N. Rahman, J. Gou, X. Liu, T. Ma, and M. Yan, “Enhanced magnetostriction of Fe81Ga19 by approaching an instable phase boundary,” Scr. Mater. 146, 200–203 (2018).

    Article  CAS  Google Scholar 

  40. G. Petculescu, R. Wu, and R. McQueeney, “Magnetoelasticity of bcc Fe–Ga alloys,” Handbook Magn. Mater. 20, 123–226 (2012).

    CAS  Google Scholar 

  41. V. V. Palacheva, A. Emdadi, F. Emeis, I. A. Bobrikov, A. M. Balagurov, S. V. Divinski, G. Wilde, and I. S. Golovin, “Phase transitions as a tool for tailoring magnetostriction in intrinsic Fe–Ga composites,” Acta Mater. 130, 229–239 (2017).

    Article  CAS  Google Scholar 

  42. B. S. Bhattacharyya, J. R. Jinschek, A. G. Khachaturyan, H. Cao, J. Li, and D. Viehland, “Nanodispersed D03-phase nanostructures observed in magnetostrictive Fe–19% Ga Galfenol alloys,” Phys. Rev. B 77, 104107 (2008).

    Article  CAS  Google Scholar 

  43. Q. Xing, Y. Du, R. J. McQueeney, and T. A. Lograsso, “Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior,” Acta Mater. 56, No. 16, 4536–4546 (2008).

    Article  CAS  Google Scholar 

  44. M. P. Ruffoni, P. Pascarelli, R. Grossinger, R. S. Turtelli, C. Bormio-Nunes, and R. F. Pettifer, “Direct measurement of intrinsic atomic scale magnetostriction,” Phys. Rev. Lett. 101, 147 202 (2008).

    Article  CAS  Google Scholar 

  45. H. Cao, P. M. Gehring, C. P. Devreugd, J. A. Rodriguez-Rivera, J. Li, and D. Viehland, “Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1 – xGax) alloys,” Phys. Rev. Lett. 102, 127 201 (2008).

    Article  CAS  Google Scholar 

  46. M. Laver, C. Mudivarthi, J. R. Cullen, A. B. Flatau, W.-C. Chen, S. M. Watson, and M. Wuttig, “Magnetostriction and magnetic heterogeneities in iron-gallium,” Phys. Rev. Lett. 105, 027 202 (2010).

    Article  CAS  Google Scholar 

  47. Y. K. He, X. Q. Ke, C. B. Jiang, N. H. Miao, H. Wang, J. M. D. Coey, Y. Z. Wang, and H. B. Xu, “Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe–Ga alloys,” Adv. Funct. Mater. 28, 1 800 858 (2018).

    Article  CAS  Google Scholar 

  48. M. V. Petrik and Yu. N. Gornostyrev, “Local deformations and chemical bonding in Fe–X (X = Si, Al, Ga, Ge) soft magnetic alloys,” Phys. Met. Metallogr. 114, 469–473 (2013).

    Article  Google Scholar 

  49. V. A. Lukshina, D. A. Shishkin, A. R. Kuznetsov, H. V. Ershov, and Yu. N. Gornostyrev, “Effect of annealing in a constant magnetic field on the magnetic properties of iron-gallium alloys,” Phys. Solid State (2020) (in press).

  50. K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  51. L. Xiaolian, L. Meixun, G. Junming, L. Qiaochu, L. Yunhao, M. Tianyu, and R. Xiaobing, “Evidence for lattice softening of the Fe–Ga magnetostrictive alloy: Stress-induced local martensites,” Mater. Des. 140, 1–6 (2018).

    Article  CAS  Google Scholar 

  52. J. Gou, T. Yang, R. Qiao, Y. Liu, T. Ma, “Formation mechanism of tetragonal nanoprecipitates in Fe–Ga alloys that dominate the material’s large magnetostriction,” Scr. Mater. 185, 129–133 (2020).

    Article  CAS  Google Scholar 

  53. X. Liu, J. Gou, C. Zhang, B. Peng, T. Ma, and X. Ren, “Martensitic transformation in ordering-treated Fe74Ga26 alloy,” J. Alloys Compd. 767, 270–275 (2018).

    Article  CAS  Google Scholar 

  54. R. Q. Wu, “Origin of large magnetostriction in FeGa alloys,” J. Appl. Phys. 91, 7358–7360 (2002).

    Article  CAS  Google Scholar 

  55. J. Steiner, S. Pokharel, A. Lisfi, J. Fleischer, P. Wyrough, L. Salamanca-Riba, J. Cumings, and M. R. Wuttig, “Transformation-induced magnetoelasticity in FeGa alloys,” Adv. Eng. Mater. 21, 1 900 399 (2019).

    Article  CAS  Google Scholar 

  56. M. V. Matyunina, M. A. Zagrebin, V. V. Sokolovskiy, O. O. Pavlukhina, V. D. Buchelnikov, A. M. Balagurov, and I. S. Golovin, “Phase diagram of magnetostrictive Fe–Ga alloys: insights from theory and experiment,” Phase Transitions 92, 101–116 (2019).

    Article  CAS  Google Scholar 

  57. M. V. Matyunina, M. A. Zagrebin, V. V. Sokolovskii, and V. D. Buchel’nikov, “Ab initio calculations of structures and magnetic properties of Fe1 – xGax,” Chelyabinskii Fiziko-Matematichesiii Zh. 1, 112–121 (2016).

    Google Scholar 

  58. M. Matyunina, M. Zagrebin, V. Sokolovskiy, and V. Buchelnikov, “Magnetic properties of Fe100 – xGax: Ab initio and Monte Carlo study,” J. Magn. Magn. Mater. 470, 118–122 (2019).

    Article  CAS  Google Scholar 

  59. M. Matyunina, M. Zagrebin, V. Sokolovskiy, and V. Buchelnikov, “Ab initio study of magnetic and structural properties of Fe–Ga alloys,” EPJ Web Conf. 185, 04013 (2018).

  60. M. V. Matyunina, M. A. Zagrebin, V. V. Sokolovskii, and V. D. Buchel’nikov, “Simulation of rhombohedral magnetostriction in Fe–Ga alloys,” Vestnik YuUrGU. Seriya “Matematicheskoe Modelirovanie I Programmirovanie” 12, 158–165 (2019).

  61. A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, “Extraordinary magne-toelasticity and lattice softening in bcc Fe–Ga alloys,” J. Appl. Phys. 93, 8621–8623 (2003).

    Article  CAS  Google Scholar 

  62. M. A. Zagrebin, M. V. Matyunina, V. V. Sokolovskiy, and V. D. Buchelnikov, “The effect of exchange-correlation potentials on magnetic properties of Fe–(Ga, Ge, Al) alloys,” J. Phys.: Conf. Ser. 1389, 012 087 (2019).

    Google Scholar 

  63. M. Matyunina, M. Zagrebin, V. Sokolovskiy, and V. Buchelnikov, “Magnetostriction of Fe100 – xGax alloys from first principles calculations,” J. Magn. Magn. Mater. 476, 120–123 (2019).

    Article  CAS  Google Scholar 

  64. M. V. Matyunina, V. D. Buchelnikov, M. A. Zagrebin, and V. V. Sokolovskiy, “Volume magnetostriction of Fe–Ga alloys: calculation from first principles,” Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:2, 57–62 (2020).

  65. H. Okamoto, “The Fe–Ga (Iron-Gallium) system,” Bull. Alloy Phase Diagrams 11, 576–581 (1990).

    Article  CAS  Google Scholar 

  66. J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, “Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al, and Fe–Ga–Ge alloys,” J. Appl. Phys. 111, 023 905 (2012).

    Article  CAS  Google Scholar 

  67. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  68. O. I. Gorbatov, A. R. Kuznetsov, Yu. N. Gornostyrev, A. V. Ruban, N. V. Ershov, V. A. Lukshina, Yu. P. Chernenkov, V. I. Fedorov, “Role of magnetism in the formation of a short-range order in iron-silicon alloys,” J. Exp. Theor. Phys. 112, 848–859 (2011).

    Article  CAS  Google Scholar 

  69. J. Boisse, H. Zapolsky, and A. G. Khachaturyan, “Atomic scale modeling of nanostructures formation in Fe–Ga alloys with giant magnetostriction: cascade ordering and decomposition,” Acta Mater. 59, 2656–2668 (2011).

    Article  CAS  Google Scholar 

  70. O. I. Gorbatov, Yu. N. Gornostyrev, A. R. Kuznetsov, and A. V. Ruban, “Effect of magnetism on short-range order formation in Fe–Si and Fe–Al alloys,” Solid State Phenom. 172–174, 618–623 (2011).

    Article  CAS  Google Scholar 

  71. M. L. Neel, “Anisotropie magnétique superficielle et surstructures d’orientation,” J. Phys. Radiat. 15, 225–239 (1954).

    Article  Google Scholar 

  72. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sanchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys.: Condens. Matter 14, No. 11, 2745–2779 (2002).

    CAS  Google Scholar 

  73. M. V. Petrik, O. I. Gorbatov, and Yu. N. Gornostyrev, “The role of magnetism in the formation of short-range order in the Fe–Ga alloy”, Pis’ma ZhTEF 98, 912–915 (2013).

    Google Scholar 

  74. Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, “Influence of annealing in the ferromagnetic state on the structure of an iron alloy with 18 at % gallium,” Fiz. Tverd. Tela 61, 12–21 (2019).

    Google Scholar 

  75. Q. Xing, Y. Du, R. J. McQueeney, and T. A. Lograsso, “Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior,” Acta Mater. 56, 4536–4546 (2008).

    Article  CAS  Google Scholar 

  76. R. C. Hall, “Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe,” J. Appl Phys. 30, No. 6, 816–819 (1959).

    Article  CAS  Google Scholar 

  77. R. C. Hall, “Single-crystal magnetic anisotropy and magnetostriction studies in iron-base alloys,” J. Appl. Phys. 31, 1037–1038 (1960).

    Article  CAS  Google Scholar 

  78. N. Kawamiya and K. Adachi, “The magnetic properties of (Fe1 – xMx)3Ga,” J. Magn. Magn. Mater. 145, 31–34 (1983).

    Google Scholar 

  79. Y. Nishino, M. Matsuo, S. Asano, and N. Kawamiya, “Stability of the D03 phase in (Fe1 – xMx)3Ga (M; 3d transition metals),” Scr. Metall. Mater. 25, 2291–2296 (1991).

    Article  CAS  Google Scholar 

  80. P. Mungsantisuk, R. Corson, and S. Guruswamy, “Rare earth free magnetostrictive FeGaX alloys for actuators,” in Advanced Materials for Energy Conversion II, Ed. by D. Chandra, R. G. Bautista, and L. Schlapbach (TMS, 2004).

    Google Scholar 

  81. L. Dai, J. Cullen, M. Wuttig, T. A. Lograsso, and E. Quandt, “Magnetism, elasticity, and magnetostriction of FeCoGa alloys,” J. Appl. Phys. 93, 8627–8629 (2003).

    Article  CAS  Google Scholar 

  82. P. Mungsantisuk, R. Corson, and S. Guruswamy, “Influence of Be and Al on the magnetostrictive behavior of FeGa alloys,” J. Appl. Phys. 98, 123 907 (2005).

    Article  CAS  Google Scholar 

  83. I. S. Golovin and J. Cifre, “Structural mechanisms of anelasticity in Fe–Ga-based alloys,” J. Alloys Compd. 584, 322–326 (2014).

    Article  CAS  Google Scholar 

  84. Y. Liu, J. Li, and X. Gao, “Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe–Ga alloys,” J. Magn. Magn. Mater. 423, 245–249 (2017).

    Article  CAS  Google Scholar 

  85. J. A. Garcia, J. Carrizo, L. Elbaile, D. Lago-Cachon, M. Rivas, D. Castrillo, and A. R. Pierna, “Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique,” J. Magn. Magn. Mater. 372, 27–32 (2014).

    Article  CAS  Google Scholar 

  86. I. S. Golovin, V. V. Palacheva, V. Yu. Zadorozhnyy, J. Zhu, H. Jiang, J. Cifre, and T. A. Lograsso, “Influence of composition and heat treatment on damping and magnetostrictive properties of Fe–18%(Ga + Al) alloys,” Acta Mater. 78, 93–102 (2014).

    Article  CAS  Google Scholar 

  87. B C. Bormio-Nunes, R. S. Turtelli, H. Mueller, R. Grӧssinger, H. Sassik, and M. A. Tirelli, “Magnetostriction and structural characterization of Fe–Ga–X (X = Co, Ni, Al) mold-cast bulk,” J. Magn. Magn. Mater. 820, 290–291 (2005).

    Google Scholar 

  88. E. Hristoforou, A. Ktena, and S. Gong, “Magnetic Sensors: Taxonomy, Applications and New Trends, IEEE Trans. Magn. 55, No. 7, 4 002 814 (2019).

  89. K. P. Belov, R. Z. Levitin, and S. A. Nikitin, “Ferromagnetism and antiferromagnetism of rare earth metals,” Fiz. Met. Metalloved. 11, 948 (1964).

    Google Scholar 

  90. K. P. Belov and V. I. Sokolov, “Magnetostriction of rare-earth ferrite garnets at low temperatures,” Zh. Eksp. Teor. Fiz. 48, 979 (1965).

    CAS  Google Scholar 

  91. Y. Wu, Y. Chen, C. Meng, H. Wang, X. Ke, J. Wang, J. Liu, T. Zhang, R. Yu, J. M. D. Coey, C. Jiang, and H. Xu, “Multiscale influence of trace Tb addition on the magnetostriction and ductility of 〈100〉 oriented directionally solidified Fe–Ga crystals,” Phys. Rev. Mater. 3, 033 401 (2019).

    Article  Google Scholar 

  92. Y. Ke, H. -H. Wu, S. Lan, H. Jiang, Y. Ren, S. Liu, C. Jiang, “Tuning magnetostriction of Fe–Ga alloys via stress engineering,” J. Alloys Compd. 822, 153 687 (2020).

    Article  CAS  Google Scholar 

  93. Y. Han, H. Wang, T. Zhang, Y. He, and C. Jiang, “Exploring structural origin of the enhanced magnetostriction in Tb-doped Fe83Ga17 ribbons: Tuning Tb solubility,” Scr. Mater. 150, 101–105 (2018).

    Article  CAS  Google Scholar 

  94. L. Zhao, X. Tian, Z. Yao, X. Zhao, R. Wang, H. O, L. Jiang, and V. G. Harris, “Enhanced magnetostrictive properties of lightly Pr doped Fe83Ga17 alloys,” J. Rare Earths 38, 257–264 (2020).

    Article  CAS  Google Scholar 

  95. C. Bormio-Nunes and F. M. Cardoso, “Assessment of Fe–Ga–B alloy magnetomechanical behavior,” J. Mater. Res. 33, No. 15, 2207–2213 (2018).

    Article  CAS  Google Scholar 

  96. C. Meng, H. Wang, Y. Wu, J. Liu, and C. Jiang, “Investigating enhanced mechanical properties in dual-phase Fe–Ga–Tb alloys,” Sci. Rep. 6, 34 258 (2016).

    Article  CAS  Google Scholar 

  97. C. Meng, Y. Wu, and C. Jiang, “Design of high ductility FeGa magnetostrictive alloys: Tb doping and directional solidification,” Mater. Des. 130, 183–189 (2017).

    Article  CAS  Google Scholar 

  98. E A. Emdadi, V. Palacheva, V. Cheverikin, A. Yu. Churyumov, and I. S. Golovin, “Fe–Ga–Tb alloys for soft magnetic applications,” J. Magn. Magn. Mater. 497, 165 987 (2020).

    Article  CAS  Google Scholar 

  99. A. Emdadi, V. V. Palacheva, V. V. Cheverikin, S. Divinski, G. Wilde, and I. S. Golovin,” Structure and magnetic properties of Fe–Ga alloys doped by Tb,” J. Alloys Compd. 758, 214–223 (2018).

    Article  CAS  Google Scholar 

  100. I. S. Golovin, A. M. Balagurov, V. V. Palacheva, A. Emdadi, I. A. Bobrikov, A. Yu. Churyumov, V. V. Cheverikin, A. V. Pozdniakov, A. V. Mikhaylovskaya, and S. A. Golovin, “Influence of Tb on structure and properties of Fe–19% Ga and Fe–27% Ga alloys,” J. Alloys Compd. 707, 51–56 (2017).

    Article  CAS  Google Scholar 

  101. A. Emdadi, V. V. Palacheva, A. M. Balagurov, I. A. Bobrikov, V. V. Cheverikin, J. Cifre, and I. S. Golovin, “Tb-dependent phase transitions in Fe–Ga functional alloys,” Intermetallics 93, 55–62 (2018).

    Article  CAS  Google Scholar 

  102. Z. Yao, X. Tian, L. HaoH. Jiang, G. Zhang, S. Wu, Z. Zhao, and N. Gerile, “Influences of rare earth element Ce-doping and melt-spinning on microstructure and magnetostriction of Fe83Ga17 alloy,” J. Alloys Compd. 637, 431–435 (2015).

    Article  CAS  Google Scholar 

  103. W. Wu, J. Liu, and C. Jiang, “Tb solid solution and enhanced magnetostriction in Fe83Ga17 alloys,” J. Alloys Compd. 622, 379–383 (2015).

    Article  CAS  Google Scholar 

  104. S. Guruswamy, P. Mungsantisuk, R. Corson, and N. Srisukhumbowornchai, “Rare-earth free Fe–Ga based magnetostrictive alloys for actuator and sensors,“ Trans. Ind. Inst. Met. 57, No. 4, 315–323 (2004).

    CAS  Google Scholar 

  105. L. Jiang, J. Yang, H. Hao, G. Zhang, S. Wu, Ya. Chen, O. Obi, T. Fitchorov, and V. G. Harris, “Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium,” Appl. Phys. Lett. 102, 222 409 (2013).

    Article  CAS  Google Scholar 

  106. V. V. Palacheva, V. V. Cheverikin, E. N. Zanaeva, F. Emias, V. V. Korovushkin, Kh. Vang, Ch. Dzhang, I. S. Golovin, “Influence of microalloying and heat treatment on the structure and properties of galfenols with a high gallium content,” Pis’ma o Materialakh 9, 51–57 (2019).

  107. I. S. Golovin, A. M. Balagurov, V. V. Palacheva, A. Emdadi, I. A. Bobrikov, V. V. Cheverikin, A. S. Prosviryakov, and S. Jalilzadeh, “From metastable to stable structure: the way to construct functionality in Fe–27Ga alloy,” J. Alloys Compd. 751, 364–369 (2018).

    Article  CAS  Google Scholar 

  108. I. S. Golovin, A. M. Balagurov, W. C. Cheng, J. Cifre, D. A. Burdin, I. A. Bobrikov, V. V. Palacheva, N. Yu. Samoylova, and E. N. Zanaeva, “In situ studies of atomic ordering in Fe–19Ga type alloys,” Intermetallics 105, 6–12 (2019).

    Article  CAS  Google Scholar 

  109. W. Wu, J. Liu, C. Jiang, and H. Xu, “Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons,” Appl. Phys. Lett. 103, 262 403 (2013).

    Article  CAS  Google Scholar 

  110. T. Jin, W. Wu, and C. Jiang, “Improved magnetostriction of Dy-doped Fe83Ga17 melt-spun ribbons,” Scr. Mater. 74, 100–103 (2014).

    Article  CAS  Google Scholar 

  111. R. Barua, P. Taheri, Y. Chen, A. Koblischka-Veneva, M. R. Koblischka, L. Jiang, and V. G. Harris, “Giant enhancement of magnetostrictive response in directionally-solidified Fe83Ga17Erx,” Compd. Mater. 11, 1039 (2018).

    Google Scholar 

  112. L. Jiheng, X. Ximing, Y. Chao, G. Xuexu, and B. Xiaoqian, “Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy,” J. Rare Earths 33, No. 10, 1087–1092 (2015).

    Article  CAS  Google Scholar 

  113. W. Wu and C. B. Jiang, “Improved magnetostriction of Fe83Ga17 ribbons doped with Sm,” Rare Met. 36, 18–22 (2017).

    Article  CAS  Google Scholar 

  114. M. Huang and T. A. Lograsso, “Effect of interstitial additions on magnetostriction in Fe–Ga alloys,” J. Appl. Phys. 103, 07B314 (2008).

  115. J. H. D. A. R. Stadler Bethanie, M. Reddy Kotha Sai, and A. Rekenthaler Douglas, U.S. Patent No. 2012/0143046A1 (2012).

  116. E. T. A. L. Clark Arthur, M. Wun-Fogle, and A. Lograsso Thomas, U.S. Patent No. S2007/015688 A2 (2008).

  117. J. L. R. J. Earl Daw, T. S. Cheney, and J. L. Rempe, U.S. Patent No. 9 960 341 B1 (2018).

  118. J. P. Teter, U.S. Patent No. 8 823 221 B1 (2014).

  119. T. S. Ueno, Y. Ikehata, and S. Yamada, U.S. Patent No. 8 766 495 B2 (2014).

  120. H. J. Timothy and G. Dietz, U.S. Patent No. 8 487 487 B2 (2013).

  121. Y. He, Y. Han, P. Stamenov, B. Kundys, J. M. D. Coey, C. Jiang, and H. Xu, “Investigating non-Joulian magnetostriction,” Nature 556, 5–7 (2018).

    Article  CAS  Google Scholar 

  122. E. M. Summers, T. A. Lograsso, J. D. Snodgrass, and J. C. Slaughter, “Magnetic and mechanical properties of polycrystalline Galfenol,” Smart Struct. Mater.: Act. Mater. Behav. Mech. 5387, 448–459 (2004).

    CAS  Google Scholar 

  123. S. M. Na and A. B. Flatau, “Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys,” J. Appl. Phys. 103, 1–4 (2008).

    Article  CAS  Google Scholar 

  124. A. E. Nolting and E. Summers, “Tensile properties of binary and alloyed Galfenol,” J. Mater. Sci. 50, 5136–5144 (2015).

    Article  CAS  Google Scholar 

  125. D. I. Holsworth and D. L. Duquesnay, “Fatigue properties of Galfenol steels,” Int. J. Fatigue 128, 105 177 (2019).

    Article  CAS  Google Scholar 

  126. A. J. Boesenberg, J. B. Restorff, M. Wun-Fogle, H. Sailsbury, and E. Summers, “Texture development in Galfenol wire,” J. Appl. Phys. 113, 10–13 (2013).

    Article  CAS  Google Scholar 

  127. I. Gervasyeva, V. Milyutin, and N. Nikolaeva, “The structure and properties of Fe85Ga15 and Fe87Ga13 alloys after hydroextrusion deformation and subsequent annealing,” Mater. Today: Proc. 19, 2258–2261 (2019).

    CAS  Google Scholar 

  128. T. Takahashi, T. Okazaki, and Y. Furuya, “Improvement in the mechanical strength of magnetostrictive (Fe–Ga–Al)–X–C (X = Zr, Nb and Mo) alloys by carbide precipitation,” Scr. Mater. 61, 5–7 (2009).

    Article  CAS  Google Scholar 

  129. J. Li, X. Gao, J. Zhu, J. Li, and M. Zhang, “Ductility enhancement and magnetostriction of polycrystalline Fe–Ga based alloys,” J. Alloys Compd. 484, 203–206 (2009).

    Article  CAS  Google Scholar 

  130. J. H. Li, X. X. Gao, J. Zhu, X. Q. Bao, T. Xia, and M. C. Zhang, “Ductility, texture and large magnetostriction of Fe–Ga-based sheets,” Scr. Mater. 63, 246–249 (2010).

    Article  CAS  Google Scholar 

  131. J. Li, Y. Liu, X. Li, X. Mu, X. Bao, and X. Gao, “Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe–Ga–Al rolled sheets,” J. Magn. Magn. Mater. 457, 30–37 (2018).

    Article  CAS  Google Scholar 

  132. S. Na, M. Smith, and A. B. Flatau, “Deformation mechanism and recrystallization relationships in galfenol single crystals: on the origin of goss and cube orientations,” Metall. Mater. Trans. A 49, 2499–2512 (2018).

    Article  CAS  Google Scholar 

  133. J. Li, Q. Qi, C. Yuan, X. Bao, and X. Gao, “Selective abnormal growth behavior of Goss grains in magnetostrictive Fe–Ga alloy sheets,” Mater. Trans. 57, 2083–2088 (2016).

    Article  CAS  Google Scholar 

  134. S.-M. Na and A. B. Flatau, “Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (0 1 1)[1 0 0] orientation,” Scr. Mater. 66, 307–310 (2012).

    Article  CAS  Google Scholar 

  135. Z. He, H. Hao, Y. Sha, W. Li, F. Zhang, and L. Zuo, “Sharp secondary recrystallization and large magnetostriction in Fe81Ga19 sheet induced by composite nanometer-sized inhibitors,” J. Magn. Magn. Mater. 478, 109–115 (2019).

    Article  CAS  Google Scholar 

  136. J. Li, C. Yuan, Q. Qi, X. Bao, and X. Gao, “Effect of initial oriented columnar grains on the texture evolution and magnetostriction in Fe–Ga rolled sheets,” Metals 7, 36 (2017).

    Article  CAS  Google Scholar 

  137. J. H. Li, W. L. Zhang, C. Yuan, X. Q. Bao, and X. X. Gao, “Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets,” Rare Met. 36, 886–893 (2017).

    Article  CAS  Google Scholar 

  138. J. Li, X. Gao, J. Zhu, C. He, J. Qiao, and M. Zhang, “Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy,” J. Alloys Compd. 476, 529–533 (2009).

    Article  CAS  Google Scholar 

  139. Q. Fu, Y. H. Sha, F. Zhang, C. Esling, and L. Zuo, “Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment,” Acta Mater. 167, 167–180 (2019).

    Article  CAS  Google Scholar 

  140. I. V. Gervasyeva and V. A. Milyutin, “Texture formation under rolling and primary recrystallization in Fe86Ga14 alloy,” Lett. Mater. 8, 341–345 (2018).

    Article  Google Scholar 

  141. Q. Qi, J. Li, X. Mu, Z. Ding, X. Bao, and X. Gao, “Microstructure evolution, magnetostrictive and mechanical properties of (Fe83Ga17)99.9(NbC)0.1 alloy ultra-thin sheets,” J. Mater. Sci. 55, 2226–2238 (2020).

    Article  CAS  Google Scholar 

  142. Y. Mansouri, V. V. Cheverikin, V. V. Palacheva, A. N. Koshmin, A. S. Aleshchenko, V. A. Astakhov, O. Yu. Dementeva, V. A. Milutin, and I. S. Golovin, “Texture and magnetostriction in warm rolled and recrystallized Fe–Ga alloy,” Phys. Met. Metallogr. (2020) (submitted).

  143. V. A. Milyutin, I. V. Gervasyeva, E. G. Volkova, A. V. Alexandrov, V. V. Cheverikin, Y. Mansouri, V. V. Palacheva, and I. S. Golovin, “Texture formation in FeGa alloy at cold hydrostatic extrusion and primary recrystallization,” J. Alloys Compd. 816, 153 283 (2020).

    Article  CAS  Google Scholar 

  144. J. H. Li, X. X. Gao, J. X. Xie, J. Zhu, X. Q. Bao, and R. B. Yu, “Large magnetostriction and structural characteristics of Fe83Ga17 wires,” Phys. B: Condens. Matter 407, 1186–1190 (2012).

    Article  CAS  Google Scholar 

  145. S.-M. Na, J. Galuardi, and A. B. Flatau, “Consolidation of (001)-oriented Fe–Ga flakes for 3-D printing of magnetostrictive powder materials,” IEEE Trans. Magn. 53, 11 (2017).

    Google Scholar 

  146. J. M. Gaudet, T. D. Hatchard, S. P. Farrell, and R. A. Dunlap, “Properties of Fe–Ga based powders prepared by mechanical alloying,” J. Magn. Magn. Mater. 320, 821–829 (2008).

    Article  CAS  Google Scholar 

  147. B. Yoo, S.-M. Na, and D. J. Pines, “Influence of particle size and filling factor of galfenol flakes on sensing performance of mangetostrictive composite transducers,” IEEE Trans. Magn. 51, 2 442 247 (2015).

    Google Scholar 

  148. P. Taheri, R. Barua, J. Hsu, M. Zamanpour, Y. Chen, and V. G. Harris, “Structure, magnetism, and magnetostrictive properties of mechanically alloyed Fe81Ga19,” J. Alloy. Compd. 661, 306–311 (2016).

    Article  CAS  Google Scholar 

  149. J. Li, X. Gao, J. Zhu, J. Jia, and M. Zhang, “The microstructure of Fe–Ga powders and magnetostriction of bonded composites,” Scr. Mater. 61, 557–560 (2009).

    Article  CAS  Google Scholar 

  150. S.-M. Na, J.-J. Park, S. Lee, S.-Y. Jeong, and A. B. Flatau, “Magnetic and structural anisotropic properties of magnetostrictive Fe–Ga flake particles and their epoxy-bonded composites,” Mater. Lett. 213, 326–330 (2018).

    Article  CAS  Google Scholar 

  151. K. Walters, S. Busbridge, and S. Walters, “Magnetic properties of epoxy-bonded iron gallium particulate composites,” Smart Mater. Struct. 22, 025 009 (2013).

    Article  CAS  Google Scholar 

  152. C. G. Shull and S. Siegel, “Neutron diffraction studies of order-disorder in alloys,” Phys. Rev. 75, 1008–1010 (1949).

    Article  CAS  Google Scholar 

  153. V. L. Aksenov and A. M. Balagurov, “Neutron diffraction on pulsed sources,” Phys.-Usp. 59, 279–303 (2016).

    Article  CAS  Google Scholar 

  154. I. S. Golovin, A. M. Balagurov, I. A. Bobrikov, and J. Cifre, “Structure induced anelasticity in Fe3Me (Me = Al, Ga, Ge) alloys,” J. Alloys Compd. 688, 310–319 (2016).

    Article  CAS  Google Scholar 

  155. I. S. Golovin, A. M. Balagurov, A. Emdadi, V. V. Palacheva, I. A. Bobrikov, V. V. Cheverikin, E. N. Zanaeva, and D. Mari, “Phase transitions in Fe–27Ga alloys: Guidance to develop functionality,” Intermetallics 100, 20–26 (2018).

    Article  CAS  Google Scholar 

  156. I. S. Golovin, A. M. Balagurov, V. V. Palacheva, I. A. Bobrikov, and V. B. Zlokazov, “In situ neutron diffraction study of bulk phase transitions in Fe–27Ga alloys,” Mater. Des. 98, 113–119 (2016).

    Article  CAS  Google Scholar 

  157. A. M. Balagurov, I. S. Golovin, I. A. Bobrikov, V. V. Palacheva, S. V. Sumnikov, and V. B. Zlokazov, “Comparative study of structural phase transitions in bulk and powdered Fe–27Ga alloy by real-time neutron thermodiffractometry,” J. Appl. Crystallogr. 50, 198–210 (2017).

    Article  CAS  Google Scholar 

  158. A. Balagurov, N. Samoylova, I. Bobrikov, S. Sumnikov, and I. Golovin, “The first- and second-order isothermal phase transitions in Fe3Ga-type compounds,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 75, 1024–1033 (2019).

    CAS  Google Scholar 

  159. V. A. Milyutin, I. V. Gervasyeva, D. A. Shishkin, Yu. N. Gornostyrev, E. Beaugnon, I. A. Bobrikov, A. M. Balagurov, A. K. Mohamed, and I. S. Golovin, “Effect of high magnetic field on the phase transition in Fe-24%Ga and Fe-27%Ga during isothermal annealing,” J. Magn. Magn. Mater. 514, 167284 (2020).

  160. X. Li, X. Bao, X. Yu, and X. Gao, “Magnetostriction enhancement of Fe73Ga27 alloy by magnetic field annealing,” Scr. Mater. 147, 64–68 (2018).

    Article  CAS  Google Scholar 

  161. S. Wen, Y. Ma, D. Wang, Z. Xu, S. Awaji, and K. Watanabe, “Magnetostriction enhancement by high magnetic field annealing in cast Fe81Ga19 alloy,” J. Magn. Magn. Mater. 442, 128–135 (2017).

    Article  CAS  Google Scholar 

  162. J. Gou, X. Liu, K. Wu, Y. Wang, S. Hu, H. Zhao, A. Xiao, T. Ma, and M. Yan, “Tailoring magnetostriction sign of ferromagnetic composite by increasing magnetic field strength,” Appl. Phys. Lett. 109, 082 404 (2016).

    Article  CAS  Google Scholar 

  163. O. Gourdon, S. L. Bud’ko, D. Williams, and G. J. Miller, “Crystallographic, electronic, and magnetic studies of ζ2-GaM (M = Cr, Mn or Fe): Trends in itinerant magnetism,” Inorg. Chem. 43, 3210–3218 (2004).

    Article  CAS  Google Scholar 

  164. A. M. Balagurov, I. A. Bobrikov, S. V. Sumnikov, and I. S. Golovin, “Cluster-like structure of Fe-based alloys with enhanced magnetostriction,” Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 14:1, S11–S14 (2020).

  165. I. A. Bobrikov, N. Yu. Samoylova, S. V. Sumnikov, O. Yu. Ivanshina, K. A. Korneeva, A. M. Balagurov, and I. S. Golovin, “Temperature evolution of Fe–27Ga structure: comparison of in situ X-ray and neutron diffraction studies,” J. Appl. Crystallogr. (2020) (submitted).

  166. J. Li, M. Li, X. Mu, X. Bao, and X. Gao, “Temperature and magnetic field dependencies of the Young’s modulus in magnetostrictive Fe–Ga alloys,” J. Appl. Phys. 123, 075 102 (2018).

    Article  CAS  Google Scholar 

  167. I. S. Golovin, Z. Belamri, and D. Hamana, “Internal friction, dilatometric and calorimetric study of anelasticity in Fe–13 at % Ga and Fe–8 at % Al–3 at % Ga alloys,” J. Alloys Compd. 509, No. 32, 8165–8170 (2011).

    Article  CAS  Google Scholar 

  168. I. S. Golovin and A. Rivière, “Mechanisms of anelasticity in Fe–13Ga alloy,” Intermetallics 19, No. 4, 453–459 (2011).

    Article  CAS  Google Scholar 

  169. I. S. Golovin, “Anelasticity of Fe–Ga based alloys,” Mater. Des. 88, 577–587 (2015).

    Article  CAS  Google Scholar 

  170. I. S. Golovin, V. V. Palacheva, J. Cifre, and C. Jiang, “Internal friction in Fe–Ga alloys at elevated temperatures,” J. Alloys Compd. 785, 1257–1263 (2019).

    Article  CAS  Google Scholar 

  171. C. Zener, Elasticity and Anelasticity of Metals (University of Chicago, Chicago, 1948).

    Google Scholar 

  172. M. A. Krishtal, Yu. V. Piguzov, and S. A. Golovin, Internal Friction in Metals and Alloys (Metallurgizdat, Moscow, 1964).

    Google Scholar 

  173. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).

    Google Scholar 

  174. M. S. Blanter, I. S. Golovin, H. Neuhauser, and H.‑R. Sinning, A Handbook. Internal Friction in Metallic Materials (Springer, Berlin, 2007).

    Book  Google Scholar 

  175. I. S. Golovin, Internal Friction and Mechanical Spectroscopy of Metallic Materials (Izd. Dom MISiS, Moscow, 2012) [in Russian].

  176. M. Ishimoto, H. Numakura, and M. Wuttig, “Magnetoelastic damping in Fe–Ga solid-solution alloys,” Mater. Sci. Eng., A 442, 195–198 (2006).

    Article  CAS  Google Scholar 

  177. J. L. Snoek, “Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron,” Phys. VIII 7, 711–733 (1941).

    Google Scholar 

  178. I. S. Golovin, T. V. Pozdova, N. Ya. Rokhmanov, and D. Mukherji, “Relaxation mechanisms in Fe–Al–C alloys,” Metall. Mater. Trans. A 34, 255–266 (2003).

    Article  Google Scholar 

  179. I. S. Golovin, H. Neuhauser, A. Riviere, and A. Strahl, “Anelastisity of Fe–Al alloys, revisited,” Intermetallics 12, No. 2, 125–150 (2004).

    Article  CAS  Google Scholar 

  180. M. Fang, J. Zhu, I. S. Golovin, J. Li, C. Yuan, and X. Gao, “Internal friction in (Fe80Ga20)99.95(NbC)0.05 alloy at elevated temperatures,” Intermetallics 29, 133–139 (2012).

    Article  CAS  Google Scholar 

  181. G. W. Smith and J. R. Birchak, “Effect of internal stress distribution on magnetomechanical damping,” J. Appl. Phys. 39, 2311–2316 (1968).

    Article  CAS  Google Scholar 

  182. S. U. Jen, Y. Y. Lo, and L. W. Pai, “Temperature dependence of mechanical properties of the Fe81Ga19 (Galfenol) alloy,” J. Phys. D: Appl. Phys. 49, 145 004 (2016).

    Article  CAS  Google Scholar 

  183. I. S. Golovin, V. V. Palacheva, A. A. Emdadi, M. Yu. Zadorozhnyy, A. V. Pozdniakov, A. I. Bazlov, E. S. Savchenko, J. Cifre, R. Barbin, and S. A. Golovin, “Structure and properties of high damping Fe–Ga based alloys,” Kovove Mater. 53, No. 4, 267–274 (2015).

    Article  CAS  Google Scholar 

  184. I. S. Golovin, V. V. Palacheva, A. I. Bazlov, J. Cifre, and J. Pons, “Structure and anelasticity of Fe3Ga and Fe3(Ga, Al) type alloys,” J. Alloys Compd. 644, 959–967 (2015).

    Article  CAS  Google Scholar 

  185. I. S. Golovin, V. V. Palacheva, D. Mari, G. Vuilleme, A. M. Balagurov, I. A. Bobrikov, J. Cifre, and H.‑R. Sinning, “Mechanical spectroscopy as an in situ tool to study first and second order transitions in metastable Fe–Ga alloys,” J. Alloys Compd. 790, 1149–1156 (2019).

    Article  CAS  Google Scholar 

  186. I. S. Golovin, V. V. Palacheva, A. Emdadi, D. Mari, A. Heintz, and I. A. Bobrikov, “Anelasticity of phase transitions and magnetostriction in Fe–(27–28%)Ga alloys,” Mater. Res. 21, No. 2, 20 170 906 (2018).

    Article  CAS  Google Scholar 

  187. I. S. Golovin, “Mechanisms of linear anelasticity in Fe–M and Fe–Al–M (M = Ga, Ge) alloys,” Phys. Met. Metallogr. 114, 1018–1030 (2013).

    Article  Google Scholar 

  188. M. Sun, X. Wang, L. Wang, H. Wang, W. Jiang, W. Liu, T. Hao, R. Gao, Yu. Gao, T. Zhang, L. Wang, Q. Fang, and C. Liu, “High-temperature order-disorder phase transition in Fe–18Ga alloy evaluated by internal friction method,” J. Alloys Compd. 750, 669–676 (2018).

    Article  CAS  Google Scholar 

  189. I. S. Golovin and A. M. Balagurov, Structure Induced Anelasticity in Iron Intermetallic Compounds and Alloys (Materials Research Forum LLC, USA, 2018).

    Google Scholar 

  190. C. Zhang, T. Ma, and G. Sun, “Tailoring volume magnetostriction of giant magnetostrictive materials by engineering magnetic domain morphology,” Appl. Phys. Lett. 110, 062 403 (2017).

    Article  CAS  Google Scholar 

  191. M. Sun, Y. Wu, W. Jiang, W. Liu, X. Wang, Yu. Gao, R. Liu, T. Hao, W. Wen, and Q. Fang, “Effect of La addition on high-temperature order-disorder phase transformation in Fe-18Ga alloy,” Intermetallics 111, 106496 (2019).

    Article  CAS  Google Scholar 

  192. A. A. Karabutov, N. B. Podymova, and E. B. Cherepetskaya, “Measuring the dependence of the local Young’s modulus on the porosity of isotropic composite materials by a pulsed acoustic method using a laser source of ultrasound,” J. Appl. Mech. Tech. Phys. 54, 500–507 (2013).

    Article  Google Scholar 

  193. I. S. Golovin, A. K. Mohamed, V. V. Palacheva, V. V. Cheverikin, A. V. Pozdnyakov, V. V. Korovushkin, A. M. Balagurov, I. A. Bobrikov, N. Fazel, M. Mouas, J-G. Gasser, F. Gasser, P. Tabary, Q. Lan, A. Kovacs, S. Ostendorp, R. Hubek, S. Divinski, and G. Wilde, “Comparative study of structure and phase transitions in Fe–(25–27)% Ga alloys,” J. Alloys Compd. 811, 152 030 (2019).

    Article  CAS  Google Scholar 

  194. A. A. Emdadi, J. Cifre, O. Yu. Dementeva, and I. S. Golovin, “Effect of heat treatment on ordering and functional properties of the Fe–19Ga alloy,” J. Alloys Compd. 619, 58–65 (2015).

    Article  CAS  Google Scholar 

  195. I. S. Golovin, L. Yu. Dubov, Yu. V. Funtikov, V. V. Palacheva, J. Cifre, and D. Hamana, “Study of ordering and properties in Fe–Ga alloys with 18 and 21 at. pct Ga.,” Metall. Mater. Trans. A 46, No. 3, 1131–1139 (2015).

    Article  CAS  Google Scholar 

  196. L. Dubov, Y. Shtotsky, Y. Akmalova, Y. Funticov, V. Palacheva, A. Bazlov, and I. S. Golovin, “Ordering processes in Fe–Ga alloys studied by positron annihilation lifetime spectroscopy,” Mater. Lett. 171, 46–49 (2016).

    Article  CAS  Google Scholar 

  197. H. Y. Yasuda, Y. Oda, M. Aoki, K. Fukushima, and Y. Umakoshi, “Multimode pseudoelasticity in Fe–23.8 at % Ga single crystals with D03 structure,” Intermetallics 16, 1298–1304 (2008).

    Article  CAS  Google Scholar 

  198. H. Y. Yasuda, Y. Oda, T. Kishimoto, and T. Maruyama, “Effect of Ga concentration on twinning pseudoelasticity in Fe–Ga single crystals,” J. Alloys Compd. 577, 563–567 (2013).

    Article  CAS  Google Scholar 

  199. C. Mudivarthi, S.-M. Na, R. Schaefer, M. Laver, M. Wuttig, and A. B. Flatau, “Magnetic domain observations in Fe–Ga alloys,” J. Magn. Magn. Mater. 322, 2023–2026 (2010).

    Article  CAS  Google Scholar 

  200. C. Mudivarthi, M. Laver, J. Cullen, A. B. Flatau, and M. Wuttig, “Origin of magnetostriction in Fe–Ga,” J. Appl. Phys. 107, 09A957 (2018).

  201. Y. He, J. M. D. Coey, R. Schaefer, and C. Jiang, Determination of bulk domain structure and magnetization processes in bcc ferromagnetic alloys: Analysis of magnetostriction in Fe83Ga17,” Phys. Rev. Mater. 2, 014 412 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to the team led by V.D. Buchel’nikov (Chelyabinsk State University), and to Yu.N. Gornostyrev and V.A. Milyutin (Institute of Physics of Metals, Ural Branch, Russian Academy of Sciences) for their valuable contribution in preparing sections 3 and 6. We thank our colleagues I.A. Bobrikov, E.N. Zanaeva, and V.V. Cheverikin for their help in obtaining the results used in this review. The authors are grateful to the Russian Science Foundation (project no. 19-72-20080) and the Russian Foundation for Basic Research (project nos. 18-02-00325_a and 18-58-52007) for financial support of authors' study of Fe–Ga alloys .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Golovin.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, I.S., Palacheva, V.V., Mohamed, A.K. et al. Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics. Phys. Metals Metallogr. 121, 851–893 (2020). https://doi.org/10.1134/S0031918X20090057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20090057

Keywords:

Navigation