Skip to main content
Log in

Scenario of a Dynamic Rearrangement of a Domain Wall in a Thin Film with a Perpendicular Anisotropy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Features of motion and of the dynamic rearrangement of a domain wall (DW) have been studied in a thin film placed in an external magnetic field perpendicular to the surface of the film. It has been shown that in fields less than some critical magnitude the motion is quasi-stationary, and in overcritical fields the movement becomes periodic. A backward motion effect was observed in some time intervals. Periodic changes of the polarity of the magnetization distribution were detected. The maximum velocities of the forward and backward motion have been shown to be identical. The coincidence of the graphs of the velocities in the half-periods with the opposite polarity was revealed. The magnetization distributions observed upon the forward and backward motion, as well as upon the change of the polarity, were found to be spatially symmetric with respect to one another. The relationship between the graphs of the full energy of the DW and its velocity has been studied. It has been shown that the maximum and minimum of the energy correspond to the zeroes of the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. L. Schryer and L. R. Walker, “The motion of 180° domain walls in uniform dc magnetic fields,” J. Appl. Phys. 45, No. 12, 5406–5421 (1974).

    Article  CAS  Google Scholar 

  2. S. W. Yuan and H. N. Bertram, “Domain wall dynamic transitions in thin film,” Phys. Rev. B 44, No. 22, 12395–12405 (1991).

    Article  CAS  Google Scholar 

  3. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, “Nonlinear dynamics of vortexlike domain walls in magnetic films with in-plane anisotropy,” Phys. Rev. B 64, 104412–104422 (2001).

    Article  Google Scholar 

  4. B. N. Filippov and L. G. Korzunin, “Nonlinear dynamics of domain walls with a vortex internal structure in masnetouniaxial films with planar anisotropy,” J. Exp. Theor. Phys. 121, 315–328 (2002).

    Article  Google Scholar 

  5. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, “Nonlinear dynamics of vortexlike domain walls in magnetic films with in-plane anisotropy in a pulsed magnetic field,” Phys. Rev. B 70, 174411(1–11) (2004).

  6. B. N. Filippov and F. A. Kassan-Ogly, “Nonlinear dynamic structure rearrangement of vortexlike domain walls in magnetic films with in-plane anisotropy,” Phys. D 237, 1151–1156 (2008).

    Article  Google Scholar 

  7. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, “Dynamic rearrangement of Domain Walls with vortex internal structure in magnetic uniaxial films with in-plane anisotropy,” Solid State Commun. 121, 55–59 (2002).

    Article  Google Scholar 

  8. S. G. Osipov, B. N. Filippov, and M. M. Khapaev, " Dynamics of a two-dimensional domain wall in a ferromagnetic film with uniaxial anisotropy,” Zh. Eksp. Teor. Fiz. 98, No. 10, 1354–1363 (1990).

    Google Scholar 

  9. F. U. Braun, Micromagnetism (Mir, Moscow, 1979) [in Russian].

  10. T. O’Dell, Ferromagnetodynamics. The Dynamics of TsMD, Domains, and Domain Walls (Mir, Moscow, 1983) [in Russian].

  11. J. C. Slonczewski, “Dynamics of magnetic domain walls,” Int. J. Magn. 2, 85–97 (1972).

    Google Scholar 

  12. J. C. Slonczewski, “Theory of domain-wall motion in magnetic films and platelets,” J. Appl. Phys. 44, 1759–1770 (1973).

    Article  CAS  Google Scholar 

  13. F. B. Hagedorn, “Dynamic conversion during magnetic bubble domain wall motion,” J. Appl. Phys. 45 (7), 3129–3140 (1974).

    Article  Google Scholar 

  14. F. Y. de Leeuw, R. van den Doel, and U. Enz, “Dynamic properties of magnetic domain walls and magnetic bubbles,” Rep. Prog. Phys. 43, No. 6, 689–783 (1980).

    Article  Google Scholar 

  15. A. Hubert, “Statics and dynamics of domain walls in bubble materials,” J. Appl. Phys. 46 (5), 2276–2288 (1975).

    Article  Google Scholar 

  16. E. E. Kotova and V. M. Chetverikov, “The saturation rate of a twisted domain wall in the Slonchevsky model,” Fiz. Tverd. Tela 32, No. 4, 1269–1272 (1990).

    Google Scholar 

  17. M. M. Khapaev, S. G. Osipov, and V. V. Ternovskii, “Modeling of three-dimensional periodic structures in ferromagnetic films,” Dokl. Akad. Nauk 305, 831–834 (1989).

    Google Scholar 

  18. R. P. Boardman, J. Zimmermann, H. Fangohr, A. A. Zhukov, and P. A. J. de Groot, “Micromagnetic simulation studies of ferromagnetic part spheres,” J. Appl. Phys. 97, 1–3 (2005).

    Article  Google Scholar 

  19. V. V. Zverev, B. N. Filippov, and M. N. Dubovik, “Three-dimensional simulation of nonlinear dynamics of domain walls in films with perpendicular anisotropy,” Phys. Solid State 59, No. 3, 520–531 (2017).

    Article  CAS  Google Scholar 

  20. T. Herranen and L. Laurson, “Bloch-line dynamics within moving domain walls in 3D ferromagnets,” Phys. Rev. B 96, 144 422–144 428 (2017).

    Article  Google Scholar 

  21. A. E. La Bonte, “Two-dimensional Bloch–type domain walls in ferromagnetic films,” J. Appl. Phys. 40 (6), 2450–2458 (1969).

    Article  CAS  Google Scholar 

  22. M. Labrune and J. Miltat, “Strong stripes as a paradigm of quasi-topological hysteresis,” J. Appl. Phys. 75, 2156–2168 (1994).

    Article  CAS  Google Scholar 

  23. M. Kisielewski, A. Maziewski, and V. Zablotskii, “High cobalt layer thickness spin-reorientation phase transition,” J. Met., Mater. Miner. 316, 277–280 (2007).

    CAS  Google Scholar 

  24. M. N. Dubovik, V. V. Zverev, and B. N. Filippov, “Two-dimensional micromagnetic simulation of domain structures in films with combined anisotropy,” Phys. Solid State 55, No. 10, 2057–2064 (2013).

    Article  CAS  Google Scholar 

  25. S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, 054433–054442 (2017).

    Article  Google Scholar 

  26. S. Honda and M. Tanaka, “Micromagnetic investigations of Neel- and Bloch-type skyrmion dynamics induced by spin Hall effect of cap layers,” Jpn. J. Appl. Phys. 56, 098001–098003 (2017).

    Article  Google Scholar 

  27. M. N. Dubovik and B. N. Filippov, “Domain structure and magnetization curves of films with perpendicular anisotropy,” Phys. Met. Metallogr. 118, No. 11, 1031–1039 (2017).

    Article  CAS  Google Scholar 

  28. V. S. Semenov, “A study of the structure and energy of the Néel domain wall by the numerical method,” Phys. Met. Metallogr. 117, No. 2, 115–123 (2016).

    Article  Google Scholar 

  29. G. I. Marchuk, Methods of Calculations (Nauka, Moscow, 1989).

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Ministry of Education and Science of the Russian Federation (theme “Magnit”, No. AAA-A18-118020290129-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Korzunin.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzunin, L.G., Filippov, B.N. Scenario of a Dynamic Rearrangement of a Domain Wall in a Thin Film with a Perpendicular Anisotropy. Phys. Metals Metallogr. 120, 1047–1054 (2019). https://doi.org/10.1134/S0031918X19110073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19110073

Keywords:

Navigation