Skip to main content
Log in

Nonlinear dynamics of domain walls with cross-ties

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamic behavior of a domain wall with cross-ties is analyzed on the basis of micromagnetic simulation with exact allowance for all main (exchange, magnetoanisotropic, and magnetostatic) interactions in thin magnetically uniaxial ferromagnetic films with planar anisotropy. It is found that the peculiarities of motion of such domain walls are closely related to the behavior of topological defects in the magnetization distribution (generation, motion, and annihilation of vortex–antivortex pairs on the film surface and Bloch points). We observe three different regimes of motion (stationary, periodic, and turbulent regimes), each of which is realized in a certain range of fields oriented along the easy magnetization axis. It is shown that the experimentally observed dynamic bends of the walls with cross-ties are determined by the type of motion of vortices and antivortices. The velocities of domain walls in different regimes are calculated, and the dynamic configurations of the magnetization and existing dynamic transitions between them are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Thiaville, J. M. Garsia, R. Dittrich, J. Miltat, and T. Schrelf, Phys. Rev. B 67, 094410 (2003).

    Article  ADS  Google Scholar 

  2. Ki-Suk Lee, Byoung-Woo Kang, Yong-Sang Yu, and Sang-Koog Kim, Appl. Phys. Lett. 85, 1568 (2004).

    Article  ADS  Google Scholar 

  3. Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006).

    Article  ADS  Google Scholar 

  4. R. Hertel and C. M. Schneider, Phys. Rev. Lett. 97, 177202 (2006).

    Article  ADS  Google Scholar 

  5. R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007).

    Article  ADS  Google Scholar 

  6. Ki-Suk Lee, K. Yu. Guslenko, Jun-Young Lee, and Sang-Koog Kim, Phys. Rev. B 76, 174410 (2007).

    Article  ADS  Google Scholar 

  7. K. Yu. Guslenko, Ki-Suk Lee, and Sang-Koog Kim, Phys. Rev. Lett. 100, 027203 (2008).

    Article  ADS  Google Scholar 

  8. K. Yu. Guslenko, A. N. Slavin, V. Tiberkevich, and Sang-Koog Kim, Phys. Rev. Lett. 101, 247203 (2008).

    Article  ADS  Google Scholar 

  9. M. Noske, H. Stoll, M. Fähnle, R. Hertel, and G. Schütz, Phys. Rev. B 91, 014414 (2015).

    Article  ADS  Google Scholar 

  10. N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, et al., Appl. Phys. Lett. 102, 062401 (2013).

    Article  ADS  Google Scholar 

  11. K. Kuepper, M. Buess, J. Raabe, C. Quitmann, and J. Fassbender, Phys. Rev. Lett. 99, 167202 (2007).

    Article  ADS  Google Scholar 

  12. J. Miguel, J. Sanchez-Barriga, D. Bayer, J. Kurde, B. Heitkamp, M. Piantek, F. Kronast, M. Aeschlimann, H. A. Durr, and W. Kuch, J. Phys.: Condens. Matter 21, 496001 (2009).

    ADS  Google Scholar 

  13. Jun-Young Lee, Ki-Suk Lee, S. Choi, K. Yu. Guslenko, and Sang-Koog Kim, Phys. Rev. B 76, 184408 (2007).

    Article  ADS  Google Scholar 

  14. K. Yu. Guslenko, Jun-Young Lee, and Sang-Koog Kim, IEEE Trans. Magn. 44, 3079 (2008).

    Article  ADS  Google Scholar 

  15. C. A. Ross, M. Hwang, M. Shima, et al., Phys. Rev. B 65, 144417 (2002).

    Article  ADS  Google Scholar 

  16. Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems (Nauka, Moscow, 1990; Kluwer Academic, Dordrecht, 1991).

    Book  MATH  Google Scholar 

  17. N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).

    Article  ADS  Google Scholar 

  18. V. V. Zverev and B. N. Filippov, Fiz. Tverd. Tela 58, 473 (2016).

    Google Scholar 

  19. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow (1979).

    MATH  Google Scholar 

  20. G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 45, 1186 (1977).

    ADS  MathSciNet  Google Scholar 

  21. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of namagnichennosti. Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983).

    Google Scholar 

  22. B. N. Filippov, M. N. Dubovik, and V. V. Zverev, J. Magn. Magn. Mater. 374, 600 (2015).

    Article  ADS  Google Scholar 

  23. A. Hubert and R. Schafer, Magnetic Domains. The Analysis of Magnetic Microstructures (Springer, Berlin, 2009).

    Google Scholar 

  24. E. E. Huber, D. O. Smith, and J. B. Goodenough, J. Appl. Phys. 29, 294 (1958).

    Article  ADS  Google Scholar 

  25. S. Middelhoek, J. Appl. Phys. 34, 1054 (1963).

    Article  ADS  Google Scholar 

  26. S. U. Jen, S. P. Shieh, and S. S. Liou, J. Magn. Magn. Mater. 147, 49 (1995).

    Article  ADS  Google Scholar 

  27. M. J. Donahue, Adv. Condens. Matter Phys. 2012, 908692 (2012).

    Article  Google Scholar 

  28. Ya. M. Pogosyan, Doctoral (Phys. Math.) Dissertation (Erevan. State Univ., Erevan, 1973).

    Google Scholar 

  29. Ya. M. Pogosyan, Z. M. Gzryan, and S. A. Arutyunyan, Fiz. Met. Metalloved. 31, 417 (1971).

    Google Scholar 

  30. S. Konishi, S. Yamada, and T. Kusuda, IEEE Trans. Magn. 7, 722 (1971).

    Article  ADS  Google Scholar 

  31. R. V. Telesnin, E. N. Ilyicheva, N. C. Kanavina, et al., IEEE Trans. Magn. 5, 232 (1969).

    Article  ADS  Google Scholar 

  32. M. E. Schabes and A. Aharony, IEEE Trans. Magn. 23, 3882 (1987).

    Article  ADS  Google Scholar 

  33. A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res. Sol. Earth 98, 9551 (1993).

    Article  ADS  Google Scholar 

  34. W. F. Brown, Micromagnetics (Interscience, New York, 1963).

    MATH  Google Scholar 

  35. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys. 41, 175005 (2008).

    Article  Google Scholar 

  36. A. Vansteenkiste, J. Leliaert, M. Dvornik, et al., AIP Adv. 4, 107133 (2014).

    Article  ADS  Google Scholar 

  37. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Phys. Rev. B 70, 174411 (2004).

    Article  ADS  Google Scholar 

  38. V. V. Zverev and G. A. Usachev, Solid State Phenom. 168–169, 105 (2011).

    Google Scholar 

  39. M. N. Dubovik and B. N. Filippov, Phys. Met. Metall. 114, 17 (2013).

    Article  Google Scholar 

  40. M. N. Dubovik, B. N. Filippov, and F. A. Kassan-Ogly, Solid St. Phenom. 168–169, 215 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Dubovik.

Additional information

Original Russian Text © M.N. Dubovik, V.V. Zverev, B.N. Filippov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 1, pp. 122–134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovik, M.N., Zverev, V.V. & Filippov, B.N. Nonlinear dynamics of domain walls with cross-ties. J. Exp. Theor. Phys. 123, 108–118 (2016). https://doi.org/10.1134/S1063776116050162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116050162

Navigation