Skip to main content
Log in

Microstructure and Properties of NiFeCrBSi/WC Composite Coatings Fabricated by Vacuum Cladding

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—In this study, WC-reinforced Ni-based alloy composite coatings were fabricated on the surface of ASTM 1045 steel by vacuum cladding. The microstructure, hardness, and wear resistance of coatings with different tungsten carbide (WC) content and dissolution mechanisms for WC at different cladding temperatures were studied. The bonding phase was mainly composed of austenite (Ni2.9Cr0.7Fe0.36, FeNi), and the reinforced phases consisted of WC, carbides (Cr7C3, (Cr,Fe)7C3), borides, and silicides. The dissolution of WC became severe with increasing cladding temperature, and the reaction products mainly included rounded block-shaped WC particles, lath-shaped rich tungsten carbide, and fine granular carbides. The Ni-based coating with 30% WC sintering at 1225°C performed better wear resistance, six times greater than that of matrix steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Farahmand and R. Kovacevic, “Corrosion and wear behavior of laser cladded Ni–WC coatings,” Surf. Coat. Technol 276, 121–135 (2015).

    Article  CAS  Google Scholar 

  2. I. G. Brodova, I. G. Shirinkina, Y. P. Zaikov, V. A. Kovrov, Y. M. Shtefanyuk, V. V. Pingin, D. A. Vinogradov, M. V. Golubev, T. I. Yablonskikh, and V. V. Astaf’ev, “Structure and phase composition of protective coatings on steel produced by methods of liquid-phase calorizing,” Phys. Met. Metallogr 116, 879–887 (2015).

    Article  Google Scholar 

  3. F. V. Kiryukhantsev-Korneev, A. V. Novikov, T. B. Sagalova, M. I. Petrzhik, E. A. Levashov, and D. V. Shtansky, “A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo–B–(N), Cr–B–(N) and Ti–B–(N) Systems,” Phys. Met. Metallogr 118, 1136–1146 (2017).

    Article  CAS  Google Scholar 

  4. P. Farahmand, S. Liu, Z. Zhang, and R. Kovacevic, “Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3,” Ceram. Int. 40, 15421–15438 (2014).

    Article  CAS  Google Scholar 

  5. Q. S. Ma, Y. J. Li, J. Wang, and K. Liu, “Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding,” J. Alloys Compd. 645, 151–157 (2015).

    Article  CAS  Google Scholar 

  6. X. Luo, J. Li, and G. J. Li, “Effect of NiCrBSi content on microstructural evolution, cracking susceptibility and wear behaviors of laser cladding WC/Ni–NiCrBSi composite coatings,” J. Alloys Compd. 626, 102–111 (2015).

    Article  CAS  Google Scholar 

  7. Y. Z. Lyu, Y. F. Sun, and Y. Yang, “Non-Vacuum sintering process of WC/W2C reinforced Ni-based coating on steel,” Met. Mater. Int 22, 311–318 (2016).

    Article  CAS  Google Scholar 

  8. M. R. Fernandez, A. Garcia, J. M. Cuetos, R. Gonzalez, A. Noriega, and M. Cadenas, “Effect of actual WC Content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC,” Wear 324325, 80–89 (2015).

    Article  Google Scholar 

  9. C. Katsich and E. Badisch, “Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions,” Surf. Coat. Technol 206, 1062–1068 (2011).

    Article  CAS  Google Scholar 

  10. M. J. Tobar, C. Alvarez, J. M. Amado, G. Rodriguez, and A. Yanez, “Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel,” Surf. Coat. Technol 200, 6313–6317 (2006).

    Article  CAS  Google Scholar 

  11. S. F. Moustafa, Z. Abdel-Hamid, O. G. Baheig, and A. Hussien, “Synthesis of WC hard materials using coated powders,” Adv. Powder Technol 22, 596–601 (2011).

    Article  CAS  Google Scholar 

  12. Y. F. Sun, S. M. Hu, Z. Y. Xiao, S. S. You, J. Y. Zhao, and Y. Z. Lv, “Effects of nickel on low-temperature impact toughness and corrosion resistance of high-ductility ductile iron,” Mater. Des 41, 37–42 (2012).

    Article  CAS  Google Scholar 

  13. Y. Z. Lyu, Y. F. Sun, and F. Y. Jing, “On the microstructure and wear resistance of Fe-based composite coatings processed by plasma cladding with B4C injection,” Ceram. Int. 41, 10934–10939 (2015).

    Article  CAS  Google Scholar 

  14. G. S. Bocharov, A. V. Eletskii, O. S. Zilova, E. V. Terentyev, S. D. Fedorovich, O. V. Chudina, and G. N. Churilov, “Mechanism of surface reinforcement of steels by nanocarbon materials using laser heating,” Phys. Met. Metallogr 119, 197–201 (2018).

    Article  CAS  Google Scholar 

  15. M. Jones and U. Waag, “The influence of carbide dissolution on the erosion-corrosion properties of cast tungsten carbide/Ni-based PTAW overlays,” Wear 271, 1314–1324 (2011).

    Article  CAS  Google Scholar 

  16. C. H. Chen, Y. Bai, and X. C. Ye, “Effects of sintering temperature on the microstructural evolution and wear behavior of WC reinforced Ni-based coatings,” Int. J. Miner. Metall. Mater 21, 1254–1262 (2014).

    Article  CAS  Google Scholar 

  17. J. M. Kim, S. G. Lee, J. S. Park, and H. G. Kim, “Laser surface modification of Ti and TiC coatings on magnesium alloy,” Phys. Met. Metallogr 115, 1389–1394 (2014).

    Article  Google Scholar 

  18. W. M. Zeng, X. P. Gan, Z. Y. Li, and K. C. Zhou, “Effect of wc addition on the microstructure and mechanical properties of TiN-based cermets,” Ceram. Int. 43, 167–173 (2017).

    Article  CAS  Google Scholar 

  19. J. H. Kang, H. S. Noh, K. M. Kim, S. C. Lee, and S. J. Kim, “Microstructures and properties of in-situ TiC particles reinforced Ni-based composite coatings prepared by plasma spray welding,” J. Alloys Compd. 696, 869–874.

  20. Z. Zhang, H. X. Liu, X. W. Zhang, S. W. Ji, Y. H. Jiang, “Dissolution Behavior of WC Reinforced Particles on Carbon Steel Surface During Laser Cladding Process,” Adv. Mater. Res. 430–432, 137–141 (2012).

    Article  CAS  Google Scholar 

  21. S. F. Zhou and X. Y. Zeng, “Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding,” J. Alloys Compd. 505, 685–691 (2010).

    Article  CAS  Google Scholar 

  22. A. Liu, M. Guo, and H. L. Hu, “Distribution and dissolution of WC particles in surface metal matrix composites produced by plasma melt injection,” Surf. Eng 26, 623–628 (2010).

    Article  CAS  Google Scholar 

  23. Y. Sun, Y. Lv, L. Wang, J. Shen, X. Jia, and J. Zhao, “Effect of aluminum on microstructure and properties of martensitic wear-resistant and heat-resistant steel,” Oxid. Met. 80, 113–124 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Science and Technology Program of Henan Province (project no. 182102210083) and Innovative Reasearch Team in Xin Lian College Henan Normal University (project no. 2018-XLXYCXTD-001). Microstructure tests, X-ray diffraction measurements, scanning electron microscopy (SEM), microhardness tests, and wear resistance measurements were performed in Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C.F., Zhang, X.D. & Sun, Y.F. Microstructure and Properties of NiFeCrBSi/WC Composite Coatings Fabricated by Vacuum Cladding. Phys. Metals Metallogr. 120, 898–906 (2019). https://doi.org/10.1134/S0031918X19090047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19090047

Keywords:

Navigation