Skip to main content
Log in

Effect of Zr Addition on Microstructure and Properties of Al–Sn–Cu Based Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure of the Al–0.3Sn–0.3Cu alloy and Al–0.3Sn–0.3Cu–0.15Zr alloy has been examined by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), the mechanical properties have been evaluated by the tensile strength and microhardness tests. After addition of Zr, fine Al3Zr precipitates provide a core for Sn during the solidification process; at the same time, Sn plays an important role in the distribution of θ(Al2Cu) phase. These reasons lead to demixing of the β(Sn) phase and Al2Cu phase obviously during the extrusion. Under the joint action of Al3Zr and Sn, the Sn–θ(Al2Cu) quasi-binary phase is distributed in the matrix uniformly. The Al3Zr particles hinder the dislocation slip, make the intermediate subboundaries keep a stable state, and enhance the recrystallization resistance. Based on these reasons, the mechanical properties of the Al–0.3Sn–0.3Cu–0.15Zr alloy have been significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Desaki, Y. Goto, and S. Kamiya, “Development of the aluminum alloy bearing with higher wear resistance,” JSAE Rev. 21, 321–325 (2000).

    Article  Google Scholar 

  2. J. Chashechkina, M. James, K. Lepper, and D. A. Rigney, “Sliding behavior of selected aluminum alloys,” Wear 46–56, 203–204 (1997).

  3. B. C. Muddle and J. F. Nie, “Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates,” Acta Mater. 56, 3490–3501 (2008).

    Article  Google Scholar 

  4. X. Liu, Y. Ma, M. Q. Zeng, and M. Zhu, “Wear behavior of Al–Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering,” Wear 265, 1857–1863 (2008).

    Article  Google Scholar 

  5. J. Dai, C. Du, L. Yang, N. Zhang, and Y. Zhang, “Effect of aluminum concentration on the microstructure and mechanical properties of Sn–Cu–Al solder alloy,” Microelectron. Reliab. 55, 596–601 (2015).

    Article  Google Scholar 

  6. H. M. Flower, S. Hirosawa, A. Kamio, and T. Sato, “Classification of the role of microalloying elements in phase decomposition of Al based alloys,” Acta Mater. 48, 1797–1806 (2000).

    Article  Google Scholar 

  7. H. M. Flower and J. M. Silcock, “Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of θ′ in Al–Cu alloys,” Scr. Mater. 46, 389–394 (2002).

    Article  Google Scholar 

  8. G. J. Auchterlonie, J. Drennan, S. H. Huo, and G. B. Schaffer, “The effect of trace elements on the sintering of an Al–Zn–Mg–Cu alloy,” Acta Mater. 49, 2671–2678 (2001).

    Article  Google Scholar 

  9. N. A. Belov, A. O. Mikhailina, A. N. Alabin, and O. O. Stolyarova, “Calculation experimental study of the phase diagram AlCuSiSn in the domain of aluminum alloys " Metalloved. Term. Obrab. Met. No. 4, 11–17 (2016).

    Google Scholar 

  10. N. A. Belov, O. O. Stolyarova, and A. O. Yakovleva, “The effect of lead (Pb) on the structure and phase composition of the casting alloy Al–5% Si–4% Cu,” Russ. Metall. (Metally) 2016, 198–206 (2016). [in Russian].

    Article  Google Scholar 

  11. N. A. Belov, O. O. Stolyarova, T. I. Murav’eva, and D. L. Zagorskii, “The phase composition and structure of aluminum alloys of the system Al–Cu–Si–Sn–Pb,” Phys. Met. Metallogr. 117, 579–587 (2016).

    Article  Google Scholar 

  12. J. D. Robson, “A new model for prediction of dispersoid precipitation in aluminum alloys containing zirconium and scandium,” Acta Mater. 52, 1409–1421 (2004).

    Article  Google Scholar 

  13. F. Jiang, Q. Pan, Z. Yin, and Y. Zhang, “Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys,” Mater. Sci. Eng., A 280, 151–155 (2000).

    Article  Google Scholar 

  14. S. M. Bruemmer, L. M. Pawlowski, I. M. Robertson, and J. S. Vetrano, “Influence of the particle size on recrystallization and grain growth in Al–Mg–X alloys,” Mater. Sci. Eng., A 238, 101–107 (1997).

    Article  Google Scholar 

  15. Y. Deng, Y. L. Duan, D. Xiao, G. F. Xu, Z. M. Yin, and L. Q. Zhou, “Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging,” Mater. Sci. Eng., A 624, 124–131 (2015).

    Article  Google Scholar 

  16. N. Ryum, “Precipitation and recrystallization in an A1–0.5 wt % Zr alloy,” Acta Metall. 17, 269–278 (1969).

    Article  Google Scholar 

  17. B. Baradarani and R. Raiszadeh, “Precipitation hardening of cast Zr-containing A356 aluminium alloy,” Mater. Des. 32, 935–940 (2011).

    Article  Google Scholar 

  18. S. Rystad and R. Ryum, “A metallographical investigation of the precipitation and recrystallization process in an Al–Zr alloy,” Aluminium 53, 193–195 (1977).

    Google Scholar 

  19. E. Nesen, “Precipitation of the metastable cubic Al3Zr phase in subperitectic Al–Zr alloy,” Acta Metall. 20, 499–506 (1992).

    Google Scholar 

  20. Z-h. Jia, J-P. Couzinié, N. Cherdoudi, I. Guillot, L. Arnberg, P. Åsholt, S. Brusethaug, B. Barlas, and D. Massinon, “Precipitation behaviour of Al3Zr precipitate in Al–Cu–Zr and Al–Cu–Zr–Ti–V alloys,” Trans. Nonferrous Met. Soc. China 22, 1860–1865 (2012).

    Article  Google Scholar 

  21. B. Li, C. Li, Q. Pan, and Z. Zhang, “Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps,” Mater. Sci. Eng., A 556, 844–848 (2012).

    Article  Google Scholar 

  22. S. A. Alkahtani, H. W. Doty, A. M. Samuel, and F. H. Samuel, “Role of Zr and Sc addition in controlling the microstructure and tensile properties of aluminum–copper based alloys,” Mater. Des. 88, 1134–1144 (2015).

    Article  Google Scholar 

  23. J. Gröbner, D. Mirković, and R. Schmid-Fetzer, “Liquid demixing and microstructure formation in ternary Al–Sn–Cu alloys,” Mater. Sci. Eng., A 487, 456–467 (2008).

    Article  Google Scholar 

  24. P. D. Brown, S. J. Harris, A. Horlock, C. J. Kong, and D. G. McCartney, “TEM assessment of HVOLF thermally sprayed Al–12 wt % Sn–1 wt % Cu alloy,” Mater. Sci. Eng., A 375–377, 595–598 (2004).

    Google Scholar 

  25. P. D. Brown, S. J. Harris, C. J. Kong, and D. G. McCartney, “Analysis of microstructure formation in gas-atomised Al–12 wt. % Sn–1wt. % Cu alloy powder,” Mater. Sci. Eng., A 454455, 252–259 (2007).

    Google Scholar 

  26. J. Drennan, D. Kent, and G. B. Schaffer, “Age hardening of a sintered Al–Cu–Mg–Si–(Sn) alloy,” Mater. Sci. Eng., A 405, 65–73 (2005).

    Article  Google Scholar 

  27. A. N. Alabin, N. A. Belov, and I. A. Matveeva, “Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching,” J. Alloys Compd. 583, 206–213 (2014).

    Article  Google Scholar 

  28. M. M. Attar, B. Ramezanzadeh, and S. Sharifi Golru, “Effects of surface treatment of aluminum alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating,” Appl. Surf. Sci. 345, 360–368 (2015).

    Article  Google Scholar 

  29. Y-l. Deng, L. Wan, X-m. Zhang, and Y-y. Zhangm, “Effects of precipitation of Al3Zr particles on microstructures, textures and properties of Al–Zn–Mg–Cu alloy hot-rolled plate,” Chin. J. Nonferrous Met. 22, 358–364 (2012).

    Google Scholar 

  30. J-h. Chen, N-p. Jin, and H. Zhang, “Hot deformation behavior of Al–Zn–Mg–Cu–Zr aluminum alloys during compression at elevated temperature,” Trans. Nonferrous Met. Soc. China. 21, 437–442 (2011).

    Article  Google Scholar 

  31. A. Azimi, A. Shokuhfar, and A. Zolriasatein, “Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing,” Mater. Sci. Eng., A 595, 124–130 (2014).

    Article  Google Scholar 

  32. X. G. Chen, J. Lai, and Z. Zhang, “The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures,” Mater. Sci. Eng., A 532, 462–470 (2012).

    Article  Google Scholar 

  33. B. Li, Q. Pan, and Z. Yin, “Characterization of hot deformation behavior of as-homogenized Al–Cu–Li–Sc–Zr alloy using processing maps,” Mater. Sci. Eng., A 614, 199–202 (2006).

    Article  Google Scholar 

  34. L. Hu, D. L. Geng, B. Wei, and W. Zhai, “Thermodynamic properties and microstructure evolution of ternary Al–10%Cu–x%Sn immiscible alloys,” J. Alloys Compd. 627, 402–409 (2015).

    Article  Google Scholar 

  35. Y. Baba and H. Yoshida, “The role of zirconium to improve strength and stress-corrosion resistance of Al–Zn–Mg and Al–Zn–Mg–Cu alloys,” Trans. Jpn. Inst. Met. 23, 620–630 (1982).

    Article  Google Scholar 

Download references

FUNDING

The project was supported by the State Key Development Program for Basic Research of China (grant no. 2012CB619504) and program for the 973 Program (nos. 2012CB619504 and 2014CB046702). We are grateful to Professor Y.C. Huang, Dr. Z.B. Xiao, Dr. Y. Liu, and Master Y. Li for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xianwei Ren, Huang, Y. & Liu, Y. Effect of Zr Addition on Microstructure and Properties of Al–Sn–Cu Based Alloy. Phys. Metals Metallogr. 120, 694–701 (2019). https://doi.org/10.1134/S0031918X19070093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19070093

Keywords:

Navigation