Skip to main content
Log in

Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This study presents a wide spectrum of experimental investigations of alkali borohydrides МВН4 (М = Li, Na, K, Rb, Cs) and complex hydrides with substituted anions Li(BH4)1– yIy, LiLa(BH4)3Cl, and Na2(BH4)(NH2) obtained by the nuclear magnetic resonance method, quasielastic neutron scattering spectroscopy, and X-ray diffraction analysis. Activation energies for reorientational motion of anions in alkali borohydrides have been systematized, and possible configurations and types of jumps of ВН4 groups have been discussed. It has been shown that the activation energy of reorientations of ВН4 groups change nonmonotonously with the growth of the cation radius. Substitution of halides and amides for anions in complex hydrides leads to an enhancement in the frequency of anion reorientations at low temperatures, a change in the translational diffusion of cations at the expense of a change in the crystalline structure, the appearance of vacancies in the lattice, and influence of the paddle-wheel effect. Interrelation between the type of anion reorientations, cation diffusion, and the crystal lattice has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. Grochala and P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chem. Rev. 104, 1283−1315 (2004).

    Article  Google Scholar 

  2. L. George and S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review,” Int. J. Hydrogen Energy 35, 5454−5470 (2010).

    Article  Google Scholar 

  3. R. Mohtadi, A. Remhof, and P. Jena, “Complex metal borohydrides: multifunctional materials for energy storage and conversion,” J. Phys.: Condens. Matter 28, 353001 (2016).

    Google Scholar 

  4. S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, “Complex hydrides for hydrogen storage,” Chem. Rev. 107, 4111−4132 (2007).

    Article  Google Scholar 

  5. M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černy, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, and T. R. Jensen, “Metal borohydrides and derivatives—Synthesis, structure and properties,” Chem. Soc. Rev. 46, 1565−1634 (2017).

    Article  Google Scholar 

  6. P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, and S. Orimo, “Complex hydrides as room-temperature solid electrolytes for rechargeable batteries,” Appl. Phys. A 122, 251 (2016).

    Article  Google Scholar 

  7. A. Züttel, A. Borgschulte, and S. Orimo, “Tetrahydroborates as new hydrogen storage materials,” Scr. Mater. 56, 823−828 (2007).

    Article  Google Scholar 

  8. A. F. Gross, J. J. Vajo, S. L. Van Atta, and G. L. Olson, “Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds,” J. Phys. Chem. C 112, 5651−5657 (2008).

    Article  Google Scholar 

  9. J. J. Vajo and G. L. Olson, “Hydrogen storage in destabilized chemical systems,” Scr. Mater. 56, 829−834 (2007).

    Article  Google Scholar 

  10. R. Retnamma, A. Q. Novais, and C. M. Rangel, “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review,” Int. J. Hydrogen Energy 36, 9772−9790 (2011).

    Article  Google Scholar 

  11. A. V. Skripov, A. V. Soloninin, and O. A. Babanova, “Nuclear magnetic resonance studies of atomic motion in borohydrides,” J. Alloys Compd. 509S, S535−S539 (2011).

    Article  Google Scholar 

  12. A. Remhof, Z. Łodziana, P. Martelli, O. Friedrichs, A. Züttel, A. V. Skripov, J. P. Embs, and T. Strässle, “Rotational motion of BH4 units in MBH4 (M = Li, Na, K) from quasielastic neutron scattering and density functional calculations,” Phys. Rev. B 81, 214304 (2010).

    Article  Google Scholar 

  13. Y. Filinchuk, D. Chernyshov, and R. Cerny, “Lightest borohydride probed by synchrotron X-ray diffraction: Experiment calls for a new theoretical revision,” J. Phys. Chem. C 112, 10579−10584 (2008).

    Article  Google Scholar 

  14. G. Renaudin, S. Gomes, H. Hagemann, L. Keller, and K. Yvon, “Structural and spectroscopic studies on the alkali borohydrides MBH4 (M = Na, K, Rb, Cs),” J. Alloys Compd. 375, 98−106 (2004).

    Article  Google Scholar 

  15. A. V. Skripov, A. V. Soloninin, Y. Filinchuk, and D. Chernyshov, “Nuclear magnetic resonance study of the rotational motion and the phase transition in LiBH4,” J. Phys. Chem. C 112, 18701−18705 (2008).

    Article  Google Scholar 

  16. A. V. Soloninin, A. V. Skripov, A. L. Buzlukov, and A. P. Stepanov, “Nuclear magnetic resonance study of Li and H diffusion in the high-temperature solid phase of LiBH4,” J. Solid State Chem. 182, 2357−2361 (2009).

    Article  Google Scholar 

  17. O. A. Babanova, A. V. Soloninin, A. P. Stepanov, A. V. Skripov, and Y. Filinchuk, “Structural and dynamical properties of NaBH4 and KBH4: NMR and synchrotron X-ray diffraction studies,” J. Phys. Chem. C 114, 3712−3718 (2010).

    Article  Google Scholar 

  18. O. A. Babanova, A. V. Soloninin, A. V. Skripov, D. B. Ravnsbæk, T. R. Jensen, and Y. Filinchuk, “Reorientational motion in alkali-metal borohydrides: NMR data for RbBH4 and CsBH4 and systematics of the activation energy variations,” J. Phys. Chem. C 115, 10305−10309 (2011).

    Article  Google Scholar 

  19. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Inostrannaya literatura, Moscow, 1963) [in Russian].

  20. M. R. Hartman, J. J. Rush, T. J. Udovic, and R. C. Bowman, and S.-J. Hwang, “Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy,” J. Solid State Chem. 180, 1298−1305 (2007).

    Article  Google Scholar 

  21. Y. Filinchuk, A. V. Talyzin, H. Hagemann, V. Dmitriev, D. Chernyshov, and B. Sundqvist, “Cation size and anion anisotropy in structural chemistry of metal borohydrides. The peculiar pressure evolution of RbBH4,” Inorg. Chem. 49, 5285−5292 (2010).

    Article  Google Scholar 

  22. K. Jimura and S. Hayashi, “Reorientational motion of BH4 ions in alkali borohydrides MBH4 (M = Li, Na, K) as studied by solid-state NMR,” J. Phys. Chem. C 116, 4883−4891 (2012).

    Article  Google Scholar 

  23. A. Remhof, A. Züttel, T. Ramirez-Cuesta, V. García-Sakai, and B. Frick, “Hydrogen dynamics in the low temperature phase of LiBH4 probed by quasielastic neutron scattering,” Chem. Phys. 427, 18−21 (2013).

    Article  Google Scholar 

  24. N. Verdal, M. R. Hartman, T. Jenkins, D. J. DeVries, J. J. Rush, and T. J. Udovic, “Reorientational dynamics of NaBH4 and KBH4,” J. Phys. Chem. C 114, 10027−10033 (2010).

    Article  Google Scholar 

  25. A. Remhof, Z. Łodziana, F. Buchter, P. Martelli, F. Pendolino, O. Friedrichs, A. Züttel, and J. P. Embs, “Rotational diffusion in NaBH4,” J. Phys. Chem. C 113, 16834−16837 (2009).

    Article  Google Scholar 

  26. M. Matsuo, Y. Nakamori, S-i. Orimo, H. Maekawa, and H. Takamura, “Lithium superionic conduction in lithium borohydride accompanied by structural transition,” Appl. Phys. Lett. 91, 224103−224105 (2007).

    Article  Google Scholar 

  27. M. Matsuo and S-i. Orimo, “Lithium fast-ionic conduction in complex hydrides: review and prospects,” Adv. Energy Mater. 1, 161−172 (2011).

    Article  Google Scholar 

  28. R. L. Corey, D. T. Shane, R. C. Bowman, and M. S. Conradi, “Atomic motions in LiBH4 by NMR,” J. Phys. Chem. C 112, 18706−18710 (2008).

    Article  Google Scholar 

  29. V. Epp and M. Wilkening, “Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: frequency-dependent NMR spectroscopy,” Phys. Rev. B 82, 020301(R) (2010).

  30. A. Lundén, “On the paddle-wheel mechanism for cation conduction in lithium sulphate,” Z. Naturforsch. 50a, 1067−1076 (1995).

    Google Scholar 

  31. A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl,” J. Phys. Chem. C 117, 14965−14972 (2013).

    Article  Google Scholar 

  32. T. Ikeshoji, E. Tsuchida, T. Morishita, K. Ikeda, M. Matsuo, Y. Kawazoe, and S-i. Orimo, “Fast-ionic conductivity of Li+ in LiBH4,” Phys. Rev. B 83, 144301 (2011).

    Article  Google Scholar 

  33. D. T. Shane, R. C. Bowman, and M. S. Conradi, “Exchange of hydrogen atoms between BH4 in LiBH4,” J. Phys. Chem. C 113, 5039−5042 (2009).

    Article  Google Scholar 

  34. A. V. Skripov, A. V. Soloninin, L. H. Rude, T. R. Jensen, and Y. Filinchuk, “Nuclear magnetic resonance studies of reorientational motion and Li diffusion in LiBH4-LiI solid solutions,” J. Phys. Chem. C 116, 26177−26184 (2012).

    Article  Google Scholar 

  35. A. V. Soloninin, O. A. Babanova, E. Y. Medvedev, A. V. Skripov, M. Matsuo, and S-i. Orimo, “Nuclear magnetic resonance study of atomic motion in the mixed borohydride-amide Na2(BH4)(NH2),” J. Phys. Chem. C 118, 14805−14812 (2014).

    Article  Google Scholar 

  36. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, and S-i. Orimo, “Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor,” J. Am. Chem. Soc. 131, 894−895 (2009).

    Article  Google Scholar 

  37. R. Miyazaki, T. Karahashi, N. Kumatani, Y. Noda, M. Ando, H. Takamura, M. Matsuo, S. Orimo, and H. Maekawa, “Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4,” Solid State Ionics 192, 143–147 (2011).

    Article  Google Scholar 

  38. P. Martelli, A. Remhof, A. Borgschulte, R. Ackermann, T. Strässle, J. P. Embs, M. Ernst, M. Matsuo, S. Orimo, and A. Züttel, “Rotational motion in LiBH4/LiI solid solutions,” J. Phys. Chem. A 115, 5329−5334 (2011).

    Article  Google Scholar 

  39. A. V. Skripov, A. V. Soloninin, O. A. Babanova, and R. V. Skoryunov, “Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion,” J. Alloys Compd. 645, S428−S433 (2015).

    Article  Google Scholar 

  40. N. Verdal, T. J. Udovic, and J. J. Rush, “The nature of \({\text{BH}}_{4}^{ - }\) reorientations in hexagonal LiBH4,” J. Phys. Chem. C 116, 1614−1618 (2012).

    Article  Google Scholar 

  41. N. Verdal, T. J. Udovic, J. J. Rush, H. Wu, and A. V. Skripov, “Evolution of the reorientational motions of the tetrahydroborate anions in hexagonal LiBH4−LiI solid solution by high-Q quasielastic neutron scattering,” J. Phys. Chem. C 117, 12010−12018 (2013).

    Article  Google Scholar 

  42. M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, and T. R. Jensen, “New Li ion conductors and solid state hydrogen storage materials: LiM(BH4)3Cl, M = La, Gd,” J. Phys. Chem. C 116, 21267−21276 (2012).

    Article  Google Scholar 

  43. Y-S. Lee, M. B. Ley, T. R. Jensen, and Y. W. Cho, “Lithium ion disorder and conduction mechanism in LiCe(BH4)3Cl,” J. Phys. Chem. C 120, 19035−19042 (2016).

    Article  Google Scholar 

  44. M. Matsuo, S. Kuromoto, T. Sato, H. Oguchi, H. Takamura, and S. Orimo, “Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions,” Appl. Phys. Lett. 100, 203904 (2012).

    Article  Google Scholar 

  45. M. Somer, S. Acar, C. Koz, I. Kokal, P. Höhn, R. Cardoso-Gil, U. Aydemir, and L. Akselrud, “α- and β‑Na2[BH4][NH2]: two modifications of a complex hydride in the system NaNH2–NaBH4; syntheses, crystal structures, thermal analyses, mass and vibrational spectra,” J. Alloys Compd. 491, 98−105 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was performed within a State Assignment of the Federal Agency of Scientific Organizations of the Russian Federation (theme Spin, No. АААА-А18-118020290104-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Soloninin.

Additional information

Translated by I. Krasnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloninin, A.V. Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides. Phys. Metals Metallogr. 120, 41–49 (2019). https://doi.org/10.1134/S0031918X19010046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19010046

Keywords:

Navigation