Skip to main content
Log in

Modeling of the Growth Kinetics of Boride Layers during the Diffusion Annealing Process

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In the current work, a diffusion model was suggested to estimate the boron activation energies for FeB and Fe2B layers on the gas-borided Armco iron at temperatures of 1073, 1173, and 1273 K for a treatment time varying between 1.33 and 4 h. This model takes into account the effect of boride incubation times during the formation of the FeB and Fe2B phases. The mass balance equations were reformulated to describe the evolution of boride layers after applying the diffusion annealing process. In addition, the time needed to completely dissolve the FeB phase in the boride layer was also predicted. This predicted time was influenced by the boriding parameters during the diffusion annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Sinha, “Boriding (Boronizing) of Steels,” Mater. Today 4, 437–447 (1991).

    Google Scholar 

  2. A. Greco, K. Mistry, V. Sista, O. Eryilmaz, and A. Erdemir, “Friction and wear behavior of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications,” Wear 27, 1754–1760 (2011).

    Article  Google Scholar 

  3. M. Tabura, M. Izciler, F. Gul, and I. Karacan, “Abrasive wear behavior of boronized AISI 8620 steel,” Wear 266, 1106–1112 (2009).

    Article  Google Scholar 

  4. V. Jain and G. Sundararajan, “Influence of the pack thickness of the boronizing mixture on the boronizing of steel,” Surf. Coat. Technol. 149, 21–26 (2002).

    Article  Google Scholar 

  5. C. Badini, C. Gianoglio, and G. Pradelli, “The effect of carbon, chromium and nickel on the hardness of boride layers,” Surf. Coat. Technol. 30, 157–170 (1987).

    Article  Google Scholar 

  6. M. Rile, “Reasons for the formation of cracks in boride coatings on steel,” Met. Sci. Heat Treat. 16, 836–838 (1974).

    Article  Google Scholar 

  7. P. Gopalakrishnan, P. Shankar, M. Palaniappa, and S. S. Ramakrishnan, “Interrupted boriding of medium-carbon steels,” Metall. Mater. Trans. A 33, 1475–1485 (2002).

    Article  Google Scholar 

  8. G. Kartal, S. Timur, V. Sista, O. L. Eryilmaz, and A. Erdemir, “The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB),” Surf. Coat. Technol. 206, 2005–2011 (2011).

    Article  Google Scholar 

  9. M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, “Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere,” J. Solid State Chem. 199, 196–203 (2013).

    Article  Google Scholar 

  10. I. Campos-Silva, M. Flores-Jimenez, G. Rodriguez-Castro, E. Hernandez-Sanchez, J. Martinez-Trinidad, and R. Tadeo-Rosas, “Improved fracture toughness of boride coating developed with a diffusion annealing process,” Surf. Coat. Technol. 237, 429–439 (2013).

    Article  Google Scholar 

  11. I. Campos-Silva, M. Ortiz-Dominguez, C. Tapia-Quintero, G. Rodríguez-Castro, M. Y. Jiménez-Reyes, and E. Chávez-Gutiérrez, “Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel,” J. Mater. Eng. Perform. 21, 1714–1723 (2012).

    Article  Google Scholar 

  12. D. N. Tsipas and S. A. Tsipas, “Boronizing of iron-based alloys,” in Encyclopedia of Iron, Steel, and Their Alloys, Five-Volume Set, Ed. by R. Colás and G. E. Totten (CRC Press, Boca Raton, 2016).

    Google Scholar 

  13. M. Keddam, Z. Nait Abdellah, M. Kulka, and R. Chegroune, “Determination of the diffusion coefficients of boron in the FeB and Fe2B layers formed on AISI D2 steel, Acta Phys. Pol., A 128, 740–745 (2015).

    Article  Google Scholar 

  14. Z. Nait Abdellah and M. Keddam, “Estimation of the boron diffusion coefficients in FeB and Fe2B layers during the pack-boriding of a high-alloy steel,” Mater. Technol. 48, 237–242 (2014).

    Google Scholar 

  15. I. Campos-Silva, M. Flores-Jiménez, D. Bravo-Bárcenas, H. Balmori-Ramírez, J. Andraca-Adame, J. Martínez-Trinidad, and J. A. Meda-Campaña, “Evolution of boride layers during a diffusion annealing process,” Surf. Coat. Technol. 309, 155–163 (2017).

    Article  Google Scholar 

  16. Z. Nait Abdellah, M. Keddam, and A. Elias, “Evaluation of the effective diffusion coefficient of boron in the Fe2B phase in the presence of chemical stresses,” Int. J. Mater. Res. 104, 260–265 (2013).

    Article  Google Scholar 

  17. H. Okamoto, “B–Fe (Boron–Iron),” J. Phase Equilib. Diffus. 25, 297–298 (2004).

    Article  Google Scholar 

  18. B. Hallemans, P. Wollants, and J. R. Roos, “Thermodynamic reassessment and calculation of the Fe–B phase diagram,” Z. Metallkd. 85, 676–682 (1994).

    Google Scholar 

  19. T. Van Rompaey, KumarK. C. Hari, and P. Wollants, “Thermodynamic optimization of the B–Fe system,” J. Alloys Compd. 334, 173–181 (2002).

    Article  Google Scholar 

  20. L. G. Yu, X. J. Chen, K. A. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics,” Acta Mater. 53, 2361–2368 (2005).

    Article  Google Scholar 

  21. M. Keddam, M. Kulka, N. Makuch, A. Pertek, and L. Małdziński, “A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: Effect of boride incubation times,” Appl. Surf. Sci. 298, 155–163 (2014).

    Article  Google Scholar 

  22. W. H. Press, B. P. Flannery, and S. A. Teukolsky, Numerical Recipes in Pascal: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  23. Campos-Silva, J. Martinez-Trinidad, M. A. Donu-Ruiz, G. Rodriguez-Castro, E. Hernandez-Sanchez, and O. Bravo-Barcenas, “Interfacial indentation test of FeB/Fe2B coatings,” Surf. Coat. Technol. 206, 1809–1815 (2011).

    Article  Google Scholar 

  24. H. Kunst and O. Schaaber, “Beobachtungen beim Oberflaechenborieren von Stahl II,” Haerterei-Tech. Mitt. 22, 1–25 (1967).

    Google Scholar 

  25. I. Campos-Silva, R. Tadeo-Rosas, H. D. Santos-Medina, and C. Lopez-Garcıa, “Boride layers: Growth kinetics and mechanical characterization,” in Encyclopedia of Iron, Steel, and Their Alloys, Five-Volume Set., Ed. by R. Colás and G. E. Totten (CRC Press, Boca Raton, 2015).

    Google Scholar 

  26. C. M. Brakman, A. W. J. Gommers, and E. J. Mittemeijer, “Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys: Boride-layer growth kinetics,” J. Mater. Res. 4, 1354–1370 (1989).

    Article  Google Scholar 

  27. M. Elias-Espinosa, M. Ortiz-Dominguez, M. Keddam, M. A. Flores-Renteria, O. Damian-Mejia, J. Zuno-Silva, J. Hernandez-Avila, E. Cardoso-Legorreta, and A. Arenas-Flores, “Growth kinetics of the Fe2B layers and adhesion on Armco iron substrate,” J. Mater. Eng. Perform. 23, 2943–2952 (2014).

    Article  Google Scholar 

  28. H. Planitz, G. Treffer, H. Konig, and G. Marx, “Zum Einfluss von Temperatur und Zeit auf die Erzeugung von Eisenboridschichten aus der Gasphase,” Neue Hütte. 27, 228–230 (1982).

    Google Scholar 

  29. V. I. Dybkov, W. Lengauer, and K. Barmak, “Formation of boride layers at the Fe–10% Cr alloy–boron interface,” J. Alloys Compd. 398, 113–122 (2005).

    Article  Google Scholar 

  30. I. Campos-Silva, S. Bernabe-Molina, D. Bravo-Barcenas, J. Martınez-Trinidad, G. Rodrıguez-Castro, and A. Meneses-Amador, “Improving the adhesion resistance of the boride coatings to AISI 316L steel substrate by diffusion annealing,” J. Mater. Eng. Perform. 25, 3852–3862 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Kulka, M. & Makuch, N. Modeling of the Growth Kinetics of Boride Layers during the Diffusion Annealing Process. Phys. Metals Metallogr. 119, 927–935 (2018). https://doi.org/10.1134/S0031918X1810006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1810006X

Keywords:

Navigation