Skip to main content
Log in

Structure of Near-Surface Layer of High-Strength Steel Subjected to Abrasive Waterjet Cutting

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper presents the results of a study into changes in the structure and microhardness in a near-surface layer of high-strength steel subjected to abrasive waterjet cutting using optical, scanning, and transmission electron microscopy, and X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. G. Teregulov, B. K. Sokolov, G. N. Varbanov, B. S. Malyshev, M. I. Neganov, and E. Yu. Erofeev, Laser Technology at a Machine Building Plant (KumAPP, Ufa, 1994) [in Russian].

  2. A. S. Denisov, Increasing the cutting efficiency of blanks from thick plates on the basis of a discrete supply of abrasive, Cand. Sci. (Eng.) Dissertation, Mosk. Gos. Tekh. Univ. “STANKIN,” Moscow, 2014.

  3. V. A. Tarasov and A. N. Polukhin, “Estimation of the geometrical parameters of the surface formed under hydroabrasive treatment,” Vestn. MGTU im. N. E. Baumana, Ser. Mashinostroenie, No. 1, 107–116 (2012).

    Google Scholar 

  4. A. M. Ignatova, M. N. Ignatov, and R. N. Sharitnov, “Classification of the main elements of the hydroabrasive cutting technological system to ensure the accuracy and quality of the cutting surface,” Mashinostr.: Setev. Elektron. Nauchn. Zh. 3 (1), 17–20 (2015).

    Google Scholar 

  5. A. Levko, “Abrasive-extrusion treatment. Modern state. Problems and directions of development,” Izv. Tomsk. Politekh. Un-Ta 309, 125–129 (2006).

    Google Scholar 

  6. L. I. Mirkin, Handbook on the X-ray Diffraction of Polycrystals (Fizmatgiz, Moscow, 1961).

    Google Scholar 

  7. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray Diffraction and Electronography of Metals (Gos. nauchno-tekh. izd. chern. tsvetn. metallurgii, Moscow, 1963) [in Russian].

  8. N. N. Kachanov and L. I. Mirkin, X-ray Diffraction (of Polycrystals). Practical Guide (Gos. nauchno-tekh. izd. mashinostr. literat., Moscow, 1960) [in Russian].

  9. L. M. Utevskii, Difraction Electron Microscopy in Metal Science (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  10. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan, Electron Microscopy of Thin Crystals (Butterworths, London, 1965; Mir, Moscow, 1968).

  11. T. I. Tabatchikova, N. A. Tereshchenko, I. L. Yakovleva, and N. Z. Gudnev, “Effect of abrasive water jet on the structure of the surface layer of Al–Mg alloy,” Phys. Met. Metallogr. 118, 879–889 (2017).

    Article  Google Scholar 

  12. R. Honeycombe, The Plastic Deformation of Metals (Cambridge University Press, Cambridge, 1968; Mir, Moscow, 1972).

  13. E. G. Astafurova, G. G. Zakharova, E. V. Naidenkin, S. V. Dobatkin, and G. I. Raab, “Influence of equal-channel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT,” Phys. Met. Metallogr. 110, 260–268 (2010).

    Article  Google Scholar 

  14. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchu-khina, “Formation and recrystallization of submicrocrystalline structure in quenched steel 20G2R: II. Low-Temperature Recrystallization,” Phys. Met. Metallogr. 99, 418–424 (2005).

    Google Scholar 

  15. M. V. Degtyarev, “Formation and recrystallization of submicrocrystalline structure in quenched 20G2R steel: I. Structure evolution upon deformation by shear under pressure,” Phys. Met. Metallogr. 99, 411–417 (2005).

    Google Scholar 

  16. I. A. Bataev, A. A. Bataev, I. A. Balaganskii, V. G. Burov, E. A. Prikhod’ko, N. A. Moreva, and A. A. Ruktuev, “Localization of plastic flow in explosively welded low-carbon steel,” Fiz. Mezomekh. 14, 93–99 (2011).

    Google Scholar 

  17. V. I. Zel’dovich, N. Yu. Frolova, A. E. Kheifets, S. M. Dolgikh, K. V. Gaan, and E. V. Shorokhov, “Deformation- and temperature-related processes that occur upon the collapse of a thick cylindrical shell made of steel 20,” Phys. Met. Metallogr. 116, 285–292 (2015).

    Article  Google Scholar 

  18. V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, and B. V. Litvinov, “Electron-microscopic investigation of high-strain-rate deformation produced by shock waves in the pearlitic structure of the grade 40 Kh steel,” Phys. Met. Metallogr. 103, 213–217 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron-microscopic studies were performed at the Center of Collaborative Access for Electron Microscopy of the Ural Branch, Russian Academy of Sciences, at the Department of Electron Microscopy of the Testing Center of Nanotechnologies and Advanced Materials, Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.This work was carried out under the “Structure” theme (no. АААА-А18-118020190116-6) and received partial support from the Complex program of the Ural Branch, Russian Academy of Sciences (project no. 18-10-2-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Tabatchikova.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatchikova, T.I., Tereshchenko, N.A., Yakovleva, I.L. et al. Structure of Near-Surface Layer of High-Strength Steel Subjected to Abrasive Waterjet Cutting. Phys. Metals Metallogr. 119, 871–879 (2018). https://doi.org/10.1134/S0031918X18090107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18090107

Keywords:

Navigation