Skip to main content
Log in

The Effect of Homogenization on the Corrosion Behavior of Al–Mg Alloy

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of homogenization on the corrosion behavior of 5083-O aluminum alloy is presented in this paper. The intergranular corrosion and exfoliation corrosion were used to characterize the discussed corrosion behavior of 5083-O aluminum alloy. The variations in the morphology, the kind and distribution of the precipitates, and the dislocation configurations in the samples after the homogenization were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the highly active grain boundary character distribution and the types of constituent particles on the corrosion are discussed on the basis of experimental observations. The results indicated that the corrosion behavior of 5083-O alloy was closely related to the microstructure obtained by the heat treatment. Homogenization carried out after casting had the optimal effect on the overall corrosion resistance of the material. Nevertheless, all samples could satisfy the requirements of corrosion resistance in marine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Goswami, G. Spanos, P. S. Pao, and R. L. Holtz, “Precipitation behavior of the ß phase in Al-5083,” Mater. Sci. Eng., A 527, 1089–1095 (2010).

    Article  Google Scholar 

  2. S. Y. Chang, B. D. Ahn, S. K. Hong, S. Kamado, Y. Kojima, and H. S. Dong, “Tensile deformation characteristics of a nano-structured 5083 Al alloy,” J. Alloys Compd. 386, 197–201(2005).

    Article  Google Scholar 

  3. H. Ezuber, A. El-Houd, and F. El-Shawesh, “A study on the corrosion behavior of aluminum alloys in seawater”, Mater. Des. 29, 801–805 (2008).

    Article  Google Scholar 

  4. Q. Du, W. J. Poole, M. A. Wells, and N. C. Parson, “Microstructure evolution during homogenization of Al–Mn–Fe–Si alloys: Modeling and experimental results,” Acta Mater. 61 (2013) 4961–4973.

    Article  Google Scholar 

  5. T. Sheppard and N. Raghunathan, “Modification of cast structures in Al–Mg alloys by thermal treatments,” Mater. Sci. Technol. 5, 268–280 (1989).

    Article  Google Scholar 

  6. Y. Deng, Z. Yin, and F. Cong, “Intermetallic phase evolution of 7050 aluminum alloy during homogenization,” Intermetallics 26, 114–121 (2012).

    Article  Google Scholar 

  7. L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).

    Article  Google Scholar 

  8. T. Radetic, M. Popovic, and E. Romhanji, “Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment,” Mater. Charact. 65, 16–27 (2012).

    Article  Google Scholar 

  9. Y. Wu, J. Xiong, R. Lai, X. Zhang, and Z. Guo, “The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization,” J. Alloys Compd. 475, 332–338. (2009).

    Article  Google Scholar 

  10. D. H. Choi, B. W. Ahn, D. J. Quesnel, and S. B. Jung, “Behavior of ß phase (Al3Mg2) in AA 5083 during friction stir welding,” Intermetallics 35, 120–127 (2013).

    Article  Google Scholar 

  11. N. Birbilis, R. Zhang, M. Lim, R. K. Gupta, C. Davies, S. P. Lynch, R. G. Kelly, and J. R. Scully, “Quantification of sensitization in AA5083-H131 via imaging Gaembrittled fracture surfaces,” Corros. 69, 396–402 (2013).

    Article  Google Scholar 

  12. S. Jain, J. L. Hudson, and J. R. Scully, “Effects of constituent particles and sensitization on surface spreading of intergranular corrosion on a sensitized AA5083 alloy,” Electrochim. Acta 108, 253–264 (2013).

    Article  Google Scholar 

  13. M. C. Carroll, P. I. Gouma, M. J. Mills, G. S. Daehn, and B. R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083,” Scr. Mater. 42, 335–340 (2000).

    Article  Google Scholar 

  14. L. Tan, T. R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083,” Corros. Sci. 52, 548–554 (2010).

    Article  Google Scholar 

  15. W. Tian, S. Li, X. Chen, J. Liu, and M. Yu, “Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys,” Corros. Sci. 107, 211–224 (2016).

    Article  Google Scholar 

  16. GB/T 7998-2005: Test method for intergranular corrosion of aluminium alloy.

  17. GB/T 22639-2008: Test method of exfoliation corrosion for wrought aluminum and aluminum alloys.

  18. GB/T 22641-2008: Wrought aluminium alloys sheet and plate for ships.

  19. G. Lucadamo, N. Y. C. Yang, C. S. Marchi, and E. J. Lavernia, “Microstructure characterization in cryomilled Al 5083,” Mater. Sci. Eng., A 430, 230–241 (2006).

    Article  Google Scholar 

  20. K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, and M. G. S. Ferreira, “Role of intermetallic phases in localized corrosion of AA5083,” Electrochim. Acta 52, 7651–7659 (2007).

    Article  Google Scholar 

  21. Metals Handbook. Volume 9, Metallography and Microstructures: Metallographic Techniques and Microstructures: Specific Metals and Aluminum Alloys, by the ASM international Handbook Committee (ASM International, 1992).

  22. A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, and M. Marcos, “Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution,” Corros. Sci. 43, 1657–1674 (2001).

    Article  Google Scholar 

  23. D. -H. Choi, B. -W. Ahn, D. J. Quesnel, and S. -B. Jung, “Behavior of ß phase (Al3Mg2) in AA 5083 during friction stir welding,” Intermetallics 35, 120–127 (2013).

    Article  Google Scholar 

  24. A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, and M. Marcos, “Influence of the cathodic intermetallics distribution on the reproducibility of the electrochemical measurements on AA5083 alloy in NaCl solutions,” Corros. Sci. 45, 161–180 (2003).

    Article  Google Scholar 

  25. C. Vargel, Preface to the Original French Edition, Corrosion of Aluminium (Elsevier, Amsterdam, 2004) pp. xiii–xiv.

    Google Scholar 

  26. N. Birbilis and R. G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys–An Experimental Survey and Discussion,” J. Electrochem. Soc. 152, (2005).

    Google Scholar 

  27. J. A. Dean, Lange’s Handbook of Chemistry, 15th Ed. (McGraw-Hill, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Additional information

Published in Russian in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 4, pp. 357–364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hung, Y., Du, Z. et al. The Effect of Homogenization on the Corrosion Behavior of Al–Mg Alloy. Phys. Metals Metallogr. 119, 339–346 (2018). https://doi.org/10.1134/S0031918X18040178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18040178

Keywords

Navigation