Skip to main content
Log in

Effects of minor Zn content on microstructure and corrosion properties of Al−Mg alloy

  • Materials, Metallurgy, Chemical and Environmental Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effects of different Zn contents in Al−Mg alloy on the microstructure characterizations were observed by advanced electron microscopy and the corrosion properties were investigated by the inter-granular corrosion tests, the exfoliation corrosion tests, and the Potentiodynamic polarizaion tests. The τ phase (Mg32 (Al, Zn)49) forms on the pre-existing Mn-rich particles and at the grain boundaries. According to the theory of binding energy, the formation of τ phase is much easier than that of β phase (Al3Mg2), somehow replacing β phase and reducing the possibility of β phase precipitation. This change dramatically decreases the susceptibility of corrosion. The Zn addition increases the corrosion resistance of Al−Mg alloy with an optimal value of 0.31%. When the Zn addition is increased to 0.78%, however, the corrosion resistance of alloy decreases once again but it is still better than that of the alloy without Zn addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KAIBYSHEV R, MUSIN F, LESUER D R, NIEH T G. Superplastic behavior of an Al–Mg alloy at elevated temperatures [J]. Materials Science and Engineering A, 2003, 342(1/2): 169–177.

    Article  Google Scholar 

  2. HOEVEN J A V D, ZHUANG L, SCHEPERS S B P D, BAEKELANDT J P. A new 5xxx series alloy developed for automotive applications [J]. Aluminium, 2002, 78: 750–754.

    Google Scholar 

  3. KIM S J, JANG S K, KIM J I. Investigation on optimum corrosion protection potential of Al alloy in marine environment [J]. Materials Science, 2008, 26(3): 779–786.

    Google Scholar 

  4. JONES R H, BAER D R, DANIELSON M J, VETRANO J S. Role of Mg in the stresscorrosion cracking of an Al–Mg alloy [J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1699–1711.

    Article  Google Scholar 

  5. CHANG J C, CHUANG T H. Stress-corrosion cracking susceptibility of the superplastically formed 5083 aluminum alloy in 3.5 pct NaCl solution [J]. Metallurgical and Materials Transactions A, 1999, 30(12): 3191–3199.

    Article  Google Scholar 

  6. BESSONE J B, SALINAS D R, MAYER C E, EBERT M, LORENZ W J. An EIS study of aluminium barrier-type oxide films formed in different media [J]. Electrochimica Acta, 1992, 37(12): 2283–2290.

    Article  Google Scholar 

  7. SEARSUS J L, GOUMA P I, BUCHHEIT R G. Stress corrosion cracking of sensitized AA5083 (Al-4.5Mg-1.0Mn) [J]. Metallurgical and Materials Transactions A, 2001, 32(11): 2859–2867.

    Article  Google Scholar 

  8. ZHU Ya-kun, CULLEN D A. Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging [J]. Metallurgical and Materials Transactions A, 2012, 43(13): 4933–4939.

    Article  Google Scholar 

  9. YASAKAU K A, ZHELUDKEVICH M L. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochimica Acta, 2007, 52(27): 7651–7659.

    Article  Google Scholar 

  10. BARBUCCI A, CERISOLA G, BRUZZONE G, SACCONE A. Activation of aluminium anodes by the presence of intermetallic compounds [J]. Electrochimica Acta, 1997, 42(15): 2369–2380.

    Article  Google Scholar 

  11. BIRBILIS N, ZHANG R, LIM M L C, GUPTA R K, DAVIES C H J, LYNCH S P, KELLY R G, SCULLY J R. Quantification of sensitization in AA5083-H131 via imaging Gaembrittled fracture surfaces [J]. Corrosion, 2012, 69(4): 396–402.

    Article  Google Scholar 

  12. OGUOCHA I N A, ADIGUN O J, YANNACOPOULOS S. Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116 [J]. Journal of Materials Science, 2008, 43(12): 4208–4214

    Article  Google Scholar 

  13. LUO Bing-hui, SHAN Yi-min, BAI Zhen-hai, Effect of annealing temperature on microstructure and corrosive properties of cold-rolled 5083 aluminum alloy after quenching [J]. Journal of Central South University: Science and Technology, 2007, 38(5): 802–808. (in Chinese)

    Google Scholar 

  14. BENSAADA S, BOUZIANE M T, MOHAMMEDI F. Effect of the temperature on the mechanism of the precipitation in Al–8% mass. Mg alloy [J]. Materials Letters, 2011, 65(17/18): 2829–2832.

    Article  Google Scholar 

  15. LIN Shuang-pin, NIE Zuo-ren, HUANG Hui, LI Bo-long. Annealing behavior of a modified 5083 aluminum alloy [J]. Materals and Design, 2010, 31(3): 1607–1612.

    Article  Google Scholar 

  16. FULLER C B, KRAUSE A R, DUNAND D C, SEIDMAN D N, Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions [J]. Materials Science and Engineering A, 2002, 338(1/2): 8–16.

    Article  Google Scholar 

  17. ALIL A, POPOVIC M, RADETIC T. Influence of annealing temperature on the baking response and corrosion properties of an Al-4.6% Mg alloy with 0.54% Cu [J]. Journal of Alloys and Compounds, 2015, 625: 76–84.

    Article  Google Scholar 

  18. CARROLL M C, GOUMA P I, MILLS M J, DAEHN G S, DUNBAR B R. Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083 [J]. Scripta Materialia, 2000, 42(4): 335–340.

    Article  Google Scholar 

  19. MENG Chun-yan, ZHANG Di, HUA Cui, ZHUANG Lin-zhong, ZHANG Ji-shan. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al-Mg alloys [J]. Journal of Alloys and Compounds, 2014, 617: 925–932.

    Article  Google Scholar 

  20. BERGMAN G, WAUGH J L T, PAULING L. The crystal structure of the metallic phase Mg32(Al, Zn)49 [J]. Acta Crystallographica, 1957, 10: 254–259.

    Article  Google Scholar 

  21. MULLER D A. Structure and bonding at the atomic scale by scanning transmission electron microscopy [J]. Nature Materials, 2009, 8: 263–270.

    Article  Google Scholar 

  22. GB/T 22639−2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys [S]. 2008. (in Chinese)

    Google Scholar 

  23. GB/T 7998−2005. Test method for intergranular corrosion of aluminium alloy [S]. 2005. (in Chinese)

    Google Scholar 

  24. GOSWAMI R, SPANOS G, PAO P S, HOLTZ R L. Precipitation behavior of the β phase in Al-5083 [J]. Materials Science and Engineering A, 2010, 527: 1089–1095.

    Article  Google Scholar 

  25. HAMANA D, BOUCHEAR M, BETROUCHE M, DERAFA A, ROKHMANOV N Y. Comparative study of formation and transformation of transition phases in Al–12% Mg alloy [J]. Journal of Alloys and Compounds, 2001, 320(1): 93–102.

    Article  Google Scholar 

  26. ZHENG Zi-qiao. Fundamentals of materials science [M]. Changsha: Central South University Press, 2005: 365–368. (in Chinese)

    Google Scholar 

  27. HIROSAWA S, SATO T, KAMIO A. Classification of the role of microalloying elements in phase decomposition of Al based alloys [J]. Acta Materialia, 2000, 48(8): 1997–1806.

    Article  Google Scholar 

  28. YANG Lei, LUO Bing-hui, ZHAN Ge. Effect of addition of Zn on microstructure and corrosion property of 5083Al alloy [J]. Journal of Central South University: Science and Technology, 2012, 43(12): 4666–4670. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-hui Luo  (罗兵辉).

Additional information

Foundation item: Project(2011-006) supported by the State Administration of Science, Technology and Industry for National Defence, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Jw., Luo, Bh., He, Kj. et al. Effects of minor Zn content on microstructure and corrosion properties of Al−Mg alloy. J. Cent. South Univ. 23, 3051–3059 (2016). https://doi.org/10.1007/s11771-016-3368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3368-6

Key words

Navigation