Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 3, pp 216–228 | Cite as

The Effect of Synthesis Conditions on the Phase Composition and Structure of EuBa2Cu3O6 + δ Samples

  • L. A. Klinkova
  • V. I. Nikolaichik
  • N. V. Barkovskii
  • V. K. Fedotov
  • A. F. Shevchun
Structure, Phase Transformations, and Diffusion
  • 11 Downloads

Abstract

The composition and the structure of ceramic EuBa2Cu3O6 + δ (Eu-123) oxide samples annealed in steps with varying processing conditions (in air or oxygen and argon atmosphere at a temperature of 940–960°С for 1–70 h with or without homogenization) were studied by the X-ray phase and chemical analysis, electron diffraction pattern analysis, elemental analysis, and high-resolution transmission electron microscopy. Regardless of the processing conditions, Eu-123 nanostructured oxide with a tetragonal or orthorhombic structure and domains 1–20 nm in size was obtained as a result of annealing. Nanostructuring of the samples, which was revealed by high-resolution electron microscopy, is attributed to their chemical nature: the presence of identical structural elements in members of the homologous Eu n Ba m Cum + nO y series of oxides allows them to intergrow coherently and create an illusion of a single crystal. Just like any other member of the Eu n Ba m Cum + nO y series, oxide Eu-123 is disproportionate depending on the annealing conditions to form other members of this series located on either side of the dominant oxide. Temperature Tc of the superconducting transition of each member of the series depends on the average oxidation state of copper \(\overline {Cu} \). At \(\overline {Cu} \) < 2, all members of the series have a tetragonal structure and do not exhibit superconducting properties. At \(\overline {Cu} \) = 2.28, five members of the Eu n Ba m Cum + nO y series with matrices (Ba : Cu) 5 : 8, 3 : 5, 2 : 3, 5 : 7, and 3 : 4 exhibit superconducting properties with Tc = 82–90 K.

Keywords

EuBa2Cu3O6 + δ oxide EunBamCum + nOy homologous series nanostructuring high-temperature superconductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Klinkova and V. I. Nikolaichik, “Nanostructural inhomogeneity of YBa2Cu3O7 - δ,” Physica C 506, 33–39.Google Scholar
  2. 2.
    L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, A. F. Shevchun, and V. K. Fedotov, “Existence of the homologous series of YnBamCum + nOy (m = 2, 3, 5; n = 1, 2) oxides with the tetragonal and orthorhombic structures of YBa2Cu3O6 + δ,” Russ. J. Inorg. Chem. 57, 1196–1209 (2012).CrossRefGoogle Scholar
  3. 3.
    L. A. Klinkova, V. I. Nikolaichik, Q. M. Ramasse, and P. Abellan, “Local variations of cation composition on a nanometer-sized scale in a YBa2Cu3O6.92 superconductor,” J. Supercond. Novel Magn. 29, 1139–1143 (2016).CrossRefGoogle Scholar
  4. 4.
    V. I. Nikolaichik and L. A. Klinkova, “Nanostructural Inhomogeneity of EuBa2Cu3O6 + δ Superconductors,” Bull. Russ. Acad. Sci.: Fiz. 80, 1418–1420 (2016).CrossRefGoogle Scholar
  5. 5.
    L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Primary crystallization field of the oxide EuBa2Cu3O6 + d and the existence of a homologous series EunBamCum + nOy (m = 2, 3, 4, 5; n = 1, 2),” Russ. J. Inorg. Chem. 60, 276–284 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Iwata, M. Hikita, Y. Tajima, and S. Tsurumi, “Study of the crystal structure of the high temperature superconductor Eu1Ba2Cu3O7 - y,” J. Cryst. Growth 85, 661–664 (1987).CrossRefGoogle Scholar
  7. 7.
    S. A. Hodorowicz, W. Lasocha, A. Lasocha, and H. A. Eick, “The preparation and magnetic behavior of EuBa2Cu3 -yMyO6.5 + x (M = Ni, Co, Al, and Zn) and some related compounds,” J. Solid State Chem. 77, 148–155 (1988).CrossRefGoogle Scholar
  8. 8.
    G. Bednorz, G. Stroink, and M.-A. White, “A Study of the heat capacity of the superconductor EuBa2Cu3O7–x,” Physica C 165, 385–390 (1990).CrossRefGoogle Scholar
  9. 9.
    A. V. Dubovitskii, N. V. Kireev, N. D. Kushch, E. F. Makarov, M. K. Makova, A. T. Mailybaev, V. A. Merzhanov, S. I. Pesotskii, R. A. Stukan, and D. M. Shashkin, “Chemivam modification of the hightemperature superconductor Eu1Ba2Cu3O7 - δ with tin: Synthesis, structure, electrophysical properties, and Mössbauer studies,” Sverkhprovod.: Fiz., Khim., Tekh. 3, 1092–1103 (1990).Google Scholar
  10. 10.
    L. Malavasi, A. Tamburini, P. Galinetto, P. Ghigna, and Gl. Flor, “The high-temperature superconductor EuBa2Cu3O6 + x: Role of thermal history on microstructure and superconducting properties,” J. Mater. Synthes. Processing 9, 31–37 (2001).CrossRefGoogle Scholar
  11. 11.
    E. Annese, G. Allodi, R. De Renzi, L. Malavasi, and P. Ghigna, “Phase Separation in Superconducting EuBa2Cu3O6 + x,” Physica B 326, 321–324.Google Scholar
  12. 12.
    Y. Li, Y. Liu, R. Duan, X. Xiong, B. Wang, G. Cao, L. Wei, D. N. Zheng, Z. X. Zhao, and J. H. Ross, “Positron annihilation study of the O-T phase transition for Eu1 + xBa2 -xCu3O7 - δ superconductors,” Physica C 402, 179–187.Google Scholar
  13. 13.
    Z. Chen, J. Zhang, Y. Su, Y. Xue, and G. Cao, “Effect of rare-earth ion size on local electron structure in RBa2Cu3O7 - δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors: A positron study,” Physica C 434, 161–166.Google Scholar
  14. 14.
    E. I. Kuznetsova, Yu. V. Blinova, S. V. Sudareva, I. B. Bobylev, E. P. Romanov, and T. P. Krinitsina, “X-ray Diffraction Study of Spinodal Decomposition of a Nonstoichiometric Y–Ba–Cu–O Compound,” Phys. Met. Metallogr. 95, 65–70 (2003).Google Scholar
  15. 15.
    S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, Yu. V. Blinova, and E. I. Kuznetsova, “Mechanism of Phase Transformations and Fine Structure of a Nonstoichiometric Compound YBa2Cu3O7–δ at Temperatures of 200 and 300°C,” Phys. Met. Metallogr. 102 (2), 205–212 (2006).CrossRefGoogle Scholar
  16. 16.
    E. P. Romanov, S. V. Sudareva, E. N. Popova, and T. P. Krinitsina, Low-Temperatureand High-Tempera ture Suprconductors and Related Composites (UrO RAN, Ekaterinburg, 2009) [in Russian].Google Scholar
  17. 17.
    L. A. Klinkova, N. V. Barkovskii, S. S. Khasanov, and K. V. Van, “Study of the behavior of of the cuprates Ba2Cu3Oy and YBa2Cu3Oy in molten KOH,” Sverkhprovod.: Fiz., Khim., Tekh. 7, 377–384 (1994).Google Scholar
  18. 18.
    D. C. Harris and T. A. Hewston, “Determination of Cu3+/Cu2+ ratio in the superconductor YBa2Cu3O8–x,” J. Solid State Chem. 69, 182–185 (1987).CrossRefGoogle Scholar
  19. 19.
    Y. Saito, T. Noji, K. Hirokawa, A. Endo, N. Matsuzaki, M. Katsumata, and N. Higuchi, “Determination of valence of copper and oxygen deficiency in superconducting SrxLa2–xCuO4–y,” Jpn. J. Appl. Phys. 26, L838–L839 (1987).CrossRefGoogle Scholar
  20. 20.
    L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “On the existence of a homologous series of BamCum + nOy oxides with the cubic structure of the BaCuO2 oxide,” Physica C 470, 2067–2071 (2010).CrossRefGoogle Scholar
  21. 21.
    ICSD No. 78467.Google Scholar
  22. 22.
    ICSD No. 65392.Google Scholar
  23. 23.
    M. Murakami, N. Sakai, T. Higuchi, and S. I. Yoo, “Melt-processed light rare earth element–Ba–Cu–O,” Supercond. Sci. Technol. 9, 1015–1032 (1996).CrossRefGoogle Scholar
  24. 24.
    T. Egi, J. G. Wen, K. Kuroda, H. Unoki, and N. Koshizuka, “High critical-current density of Nd(Ba,Nd)2Cu3O7 - δ single crystals,” Appl. Phys. Lett. 67, 2406–2408 (1995).CrossRefGoogle Scholar
  25. 25.
    W. Ting, T. Egi, R. Itti, K. Kuroda, N. Koshizuka, S. Tanaka, “Surface electronic properties and atomic images of the as-prepared Nd1Ba2Cu3Oy single crystals,” Jpn. J. Appl. Phys. 35, 4034–4037 (1996).CrossRefGoogle Scholar
  26. 26.
    Yu. D. Tret’yakov and E. A. Gudilin, “Chemical principles of the preparation of metal-oxide superconductors,” Usp. Khim. 69, 3–40 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Klinkova
    • 1
  • V. I. Nikolaichik
    • 2
  • N. V. Barkovskii
    • 1
  • V. K. Fedotov
    • 1
  • A. F. Shevchun
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations