Skip to main content
Log in

Evolution of grain–subgrain structure and carbide subsystem upon annealing of a low-carbon low-alloy steel subjected to high-pressure torsion

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of annealing on the evolution of an ultrafine-grain structure and carbides in a 06MBF steel (Fe–0.1Mo–0.6Mn–0.8Cr–0.2Ni–0.3Si–0.2Cu–0.1V–0.03Ti–0.06Nb–0.09C, wt %) has been studied. The grain–subgrain structure (d = 102 ± 55 nm) formed by high-pressure torsion and stabilized by dispersed (MC, M 3C, d = 3–4 nm) and relatively coarse carbides (M 3C, d = 15–20 nm) is stable up to a temperature of 500°C (1 h) (d = 112 ± 64 nm). Annealing at a temperature of 500°C is accompanied by the formation in regions with a subgrain structure of recrystallized grains, the size of which is close to the size of subgrains formed by high-pressure torsion. The average size and distribution of dispersed particles change weakly. The precipitation hardening and the increase in the fraction of high-angle boundaries in the structure cause an increase in the values of the microhardness to 6.4 ± 0.2 GPa after annealing at 500°C as compared to the deformed state (6.0 ± 0.1 GPa). After 1-h annealing at 600 and 700°C, the microcrystal size (d = 390 ± 270 nm and 1.7 ± 0.7 μm, respectively) increases; the coarse M 3C (≈ 50 nm) and dispersed carbides grow by 5 and 8 nm, respectively. The value of the activation energy for grain growth Q = 516 ± 31 kJ/mol upon annealing of the ultrafine-grained steel 06MBF produced by high-pressure torsion exceeds the values determined in the 06MBF steel with a submicrocrystalline structure formed by equal-channel angular pressing and in the nanocrystalline α iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  2. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  3. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  4. V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 115, 682–691 (2014).

    Article  Google Scholar 

  5. S. V. Dobatkin, “Severe plastic deformation of steels: Structure, properties and techniques,” in Investigations and Applications of Severe Plastic Deformation, Ed. by T. C. Lowe and R. Z. Valiev, NATO Science Series 3, High Technology. Vol. 80 (Kluwer Academic, Dordrecht, 2000), pp. 13–22.

    Chapter  Google Scholar 

  6. S. V. Dobatkin and X. Sauvage, “Bulk nanostructured multiphase ferrous and nonferrous alloys,” in Bulk Nanostructured Materials, Ed. by M. J. Zehetbauer and Y. T. Zhu (Wiley-VCH, Weinheim, 2009), pp. 571–603.

    Google Scholar 

  7. A. A. Zakirova, R. G. Zaripova, and V. I. Semenov, “The structure and mechanical properties of carbon steels subjected to severe plastic deformation by torsion,” Vestn. Ufim. Gos. Av.-Tekh. Univ. 11, 123–130 (2008).

    Google Scholar 

  8. S. V. Dobatkin, S. V. Shagalina, O. I. Sleptsov, and N. A. Krasil’nikov, “Effect of the initial state of a lowcarbon steel on nanostructure formation during highpressure torsion at high strains and pressures,” Russ. Metall. (Metally) 2006, 445–452 (2006).

    Article  Google Scholar 

  9. A. V. Korznikov, Yu. V. Ivanisenko, D. V. Laptionok, I. M. Safarov, V. P. Pilyugin, and R. Z. Valiev, “Influence of severe plastic deformation on structure and phase composition of carbon steel” Nanostruct. Mater. 4, 159–167 (1994).

    Article  Google Scholar 

  10. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion,” Acta Mater. 55, 6039–6050 (2007).

    Article  Google Scholar 

  11. A. Etienne, B. Radiguet, C. Genevois, J. M. le Breton, R. Valiev, and P. Pareige, “Thermal stability of ultrafine-grained austenitic steels,” Mater. Sci. Eng., A 527, 5805–5810 (2010).

    Article  Google Scholar 

  12. Y. Ivanisenko, R. K. Wunderlich, R. Z. Valiev, and H. J. Fecht, “Annealing behavior of nanostructured carbon steel produced by severe plastic deformation,” Scr. Mater. 49, 947–952 (2003).

    Article  Google Scholar 

  13. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  14. S. V. Dobatkin, “On the increase of thermal stability of ultrafine grained materials obtained by severe plastic deformation,” Mater. Sci. Forum 426–432, 2699–2704 (2003).

    Article  Google Scholar 

  15. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Thermal stability of submicrocrystalline structure in 4Kh14N14V2M steel,” Phys. Met. Metallogr. 109, 135–141 (2010).

    Article  Google Scholar 

  16. M. V. Karavaeva, S. K. Nurieva, N. G. Zaripov, A. V. Ganeev, and R. Z. Valiev, “Microstructure and mechanical properties of medium-carbon steel subjected to severe plastic deformation,” Metal Sci. Heat Treat. 54, 155–159 (2012).

    Article  Google Scholar 

  17. C. Sun, Y. Yang, Y. Liu, K. T. Hartwig, H. Wang, S. A. Maloy, T. R. Allen, and X. Zhang, “Thermal stability of ultrafine-grained Fe–Cr–Ni alloy,” Mater. Sci. Eng., A 542, 64–70 (2012).

    Article  Google Scholar 

  18. O. Renk, A. Hohenwarter, K. Eder, K. S. Kormout, J. M. Cairney, and R. Pippan, “Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?,” Scr. Mater. 95, 27–30 (2015).

    Article  Google Scholar 

  19. E. G. Astafurova, S. V. Dobatkin, E. V. Naidenkin, S. V. Shagalina, G. G. Zakharova, and Yu. F. Ivanov, “Structural and phase transformations in nanostructured 0.1% C–Mn–V–Ti steel during cold deformation by high pressure torsion and subsequent heating,” Nanothechn. in Russia 4, 109–120 (2009).

    Article  Google Scholar 

  20. S. V. Dobatkin, P. D. Odessky, and S. V. Shagalina, “Ultrafine grained low carbon steels processed by severe plastic deformation,” Mater. Sci. Forum 584–586, 623–630 (2008).

    Article  Google Scholar 

  21. G. G. Maier, E. G. Astafurova, H. J. Maier, E.V. Naydenkin, G. I. Raab, P. D. Odessky, and S. V. Dobatkin, “Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng., A 581, 104–107 (2013).

    Article  Google Scholar 

  22. K.-T. Park and D. Shin, “Annealing behavior of submicrometer grained ferrite in low carbon steel fabricated by severe plastic deformation,” Mater. Sci. Eng., A 334, 79–86 (2002).

    Article  Google Scholar 

  23. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Low-temperature recrystallization of submicrocrystalline structure of ARMKO iron and 30G2R steel,” Phys. Met. Metallogr. 98, 83–91 (2004).

    Google Scholar 

  24. L. M. Utevskii, Diffraction Electron Microscopy in Metallography (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  25. M. I. Gol’dshtein and V. M. Farber, Precipitation Strengthening of Steel (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  26. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Diffraction and Electron-Optical Analysis (MISiS, Moscow, 2002) [in Russian].

    Google Scholar 

  27. G. K. Williamson and R. E. Smallman, “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum,” Philos. Mag., 1, 34–46 (1956).

    Article  Google Scholar 

  28. G. G. Maier, E. G. Astafurova, V. S. Koshovkina, E. V. Naidenkin, A. I. Smirnov, V. A. Bataev, A. A. Bataev, P. D. Odesskii, and S. V. Dobatkin, “Formation of ultrafine-grained structure in low-carbon 06MBF steel by cold high-pressure torsion,” Deform. Razrush. Mater., No. 6, 19–24 (2014).

    Google Scholar 

  29. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low-alloy low-carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, 69–76 (2014).

    Article  Google Scholar 

  30. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Grain growth upon annealing of ARMKO iron with various ultra-fine-grained structure produced by high-pressure torsion deformation,” Phys. Met. Metallogr. 99, 276–285 (2005).

    Google Scholar 

  31. Y. Mine, T. Tsumagari, and Z. Horita, “Hydrogen trapping on lattice defects produced by high pressure torsion in Fe–0.01 mass% C alloy,” Scr. Mater. 63, 552–555 (2010).

    Article  Google Scholar 

  32. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Low-temperature recrystallizatin of pure iron deformed by shear under pressure,” Phys. Met. Metallogr. 97, 72–81 (2004).

    Google Scholar 

  33. T. R. Malow and C. C. Koch, “Grain growth in nanocrystalline iron prepared by mechanical attrition,” Acta Mater. 45, 2177–2186 (1997).

    Article  Google Scholar 

  34. G. G. Maier, E. G. Astafurova, E. V. Naidenkin, S. V. Dobatkin, V. S. Koshovkina, “Thermal stability of ultrafine-grained structure produced by equal-channel angular pressing in Fe–Mn–V–Ti–0.1 C and Fe–Mo–Nb–V–0.1 C low-carbon steels with various phase composition, Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 1, 42–47 (2013) [in Russian].

    Google Scholar 

  35. I. I. Novikov, V. S. Zolotorevskii, V. K. Portnoi, N.A. Belov, D. V. Livanov, S. V. Medvedeva, A. A. Aksenov, and Yu. V. Evseev, A Textbook on Metallography, Vol. 2 (MISiS, Moscow, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Maier.

Additional information

Original Russian Text © G.G. Maier, E.G. Astafurova, E.V. Melnikov, A.I. Smirnov, V.A. Bataev, E.V. Naydenkin, P.D. Odessky, S.V. Dobatkin, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 11, pp. 1140–1150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, G.G., Astafurova, E.G., Melnikov, E.V. et al. Evolution of grain–subgrain structure and carbide subsystem upon annealing of a low-carbon low-alloy steel subjected to high-pressure torsion. Phys. Metals Metallogr. 117, 1101–1110 (2016). https://doi.org/10.1134/S0031918X16110090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16110090

Keywords

Navigation