Skip to main content
Log in

Influence of warm deformation on the formation of a fragmented structure in low-carbon martensitic steels

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of optical metallography and scanning and transmission electron microscopy were used to investigate the structure of low-carbon steels of martensitic classes VKS-7 and VKS-10 subjected to warm rolling or upsetting at temperatures of 600 and 700°C (in the α state) and 800°C (in the γ state). It has been shown that the deformation by rolling at 600°C to degrees of 40 and 60% does not lead to the destruction of the lath structure of the initial martensite; an increase in the rolling temperature to 700°C and of the degree of deformation to 80% favors the development of recrystallization in situ. It has been found that, upon warm deformation by upsetting, recrystallization occurs at lower temperatures than in the case of the warm rolling. It has been shown that warm deformation by upsetting at a temperature of 700°C leads to the formation of a fragmented structure with a high fraction of ultrafine grains with a size less than 2 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. B. Pickering, Physical Metallurgy and the Design of Steels (Apl. Sci. Publ., London, 1978; Metallurgya, Moscow, 1982).

    Google Scholar 

  2. V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, “Technology for creating nanostructured construction steels,” Metal Sci. Heat Treat. 51, 267–271 (2009).

    Article  Google Scholar 

  3. I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, “Alloying principles, phase transformations, structure and properties of low-temperature weldable shipbuilding steels,” Metal Sci. Heat Treat. 49, 3–9 (2007).

    Article  Google Scholar 

  4. E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin, S. V. Dobatkin, and G. I. Raab, “Influence of equalchannel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT,” Phys. Met. Metalogr. 110, 260–268 (2010).

    Article  Google Scholar 

  5. T. I. Tabatchikova, I. L. Yakovleva, A. I. Plokhikh, and S. Yu. Del’gado Reina, “Studying a multilayer material based on stainless steels and produced by hot pack rolling,” Phys. Met. Metallogr. 115, 403–412 (2014).

    Article  Google Scholar 

  6. M. L. Bernshtein, V A. Zaimovskii, and L. I. Kaputkina, Thermomechanical Steel Treatment (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  7. V. M. Schastlivtsev, A. B. Kut’in, and M. A. Smirnov, Correction of Structure and Fractures of Superheated Structural Steel (Ural. Otd. Ross. Akad, Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  8. V. M. Schastlivtsev, T. I. Tabatchikova, and I. L. Yakovleva, “Structure inheritance and intercrystalline brittleness in high-strength low-carbon alloy steel,” Phys. Met. Metallogr. 80, 668–675 (1995)].

  9. V. D. Sadovskii, T. I. Tabatchikova, V. M. Schastlivtsev, and I. L. Yakovleva, “Phase and structural transformations upon laser heating of steel. III. Effect of plastic deformation of quenched steel on the recrystallization under laser heating,” Fiz. Met. Metalloved. 63, 1165–1173 (1987).

    Google Scholar 

  10. D. A. Sukhanov, “Increase of the structural strengthof steels by formingfine-dispersed layered structure,” Candidate Sci. (Eng.) Dissertation (Novosibirsk, 2002).

    Google Scholar 

  11. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgy, Moscow, 1978) [in Russian].

    Google Scholar 

  12. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgy, Moscow, 1986) [in Russian].

    Google Scholar 

  13. Yu. V. Khlebnikova, D. P. Rodionov, I. L. Yakovleva, and V. M. Schastlivtsev, “Structural changes in packet martensite of quenched pseudosingle crystals of a structural steel upon large plastic deformation,” Phys. Met. Metallogr. 86, 394–399 (1998).

    Google Scholar 

  14. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Formation and recrystallization of submicrocrystalline structure in quenched 20G2R steel: I. Structure evolution upon deformation by shear under pressure,” Phys. Met. Metallogr. 99, 411–417 (2005).

    Google Scholar 

  15. D. P. Rodionov and V. M. Schastlivtsev, Steel Single Crystals (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1996) [in Russian].

    Google Scholar 

  16. I. I. Novikov and K. M. Rozin, Crystallography and Crystal-Lattice Defects (Metallurgy, Moscow, 1990) [in Russian].

    Google Scholar 

  17. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. A. Okishev, I. L. Tabatchikova, and Yu. V. Khlebnikova, Pearlite in Carbon Steel (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  18. L. S. Davydova, M. V. Degtyarev, R. I. Kuznetsov, V. I. Levit, V. I. Novozhonov, V. P. Pilugin, and N. A. Smirnova, “Substructure and properties of martensite of structural alloy steels after deformation according to different modes,” Fiz. Met. Metalloved. 61, 339–347 (1986).

    Google Scholar 

  19. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Formation of ultrafine-grained structure in heavily deformed structural steel upon recrystallization,” Phys. Met. Metallogr. 77, 195–198 (1994).

    Google Scholar 

  20. M. M. Shteinberg, A. S. Zlatkina, and I. K. Schastlivtseva, “Study of softening and the energies of interatomic bonds in complex-alloyed ferrite,” Fiz. Met. Metalloved. 14, 820–827 (1962).

    Google Scholar 

  21. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, L. Yu. Egorova, K. A. Vatutin, A. A. Kruglova, V. V. Orlov, and E. I. Khlusova, “Research of structure and properties of low alloy cold-resistant steel 10GNB made using various technological regimes,” Vopr. Materialoved., No. 1 (53), 7–20 (2008).

    Google Scholar 

  22. V. M. Schastlivtsev, T. I. Tabatchikova, I. L.Yakovleva, L. Yu. Egorova, I. V. Gervas’eva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Effect of thermomechanical treatment on the cold resistance of low-carbon low-alloy welding steel,” Phys. Met. Metallogr. 109, 289–299 (2010).

    Article  Google Scholar 

  23. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Klyueva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Microstructure and properties of low-carbon weld steel after thermomechanical strengthening,” Phys. Met. Metallogr. 113, 480–488 (2012).

    Article  Google Scholar 

  24. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Klyueva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Effect of austenite-decomposition temperature on bainite morphology and properties of lowcarbon steel after thermomechanical treatment,” Phys. Met. Metallogr. 114, 419–429 (2013).

    Article  Google Scholar 

  25. I. M. Safarov, A. V. Korznikov, S. N. Sergeev, S. V. Gladkovskii, and E. M. Borodin, “Effect of submicrocrystalline state on strength and impact toughness of low-carbon 12GBA steel,” Phys. Met. Metallogr. 113, 1001–1006 (2012).

    Article  Google Scholar 

  26. I. M. Safarov, A. V. Korznikov, R. M. Galeev, S. N. Sergeev, S. V. Gladkovskii, E. M. Borodin, and I. Yu. Pyshmintsev, “Strength and impact toughness of low-carbon steel with fibrous ultrafine-grained structure,” Phys. Met. Metallogr. 115, 295–302 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Tabatchikova.

Additional information

Original Russian Text © T.I. Tabatchikova, I.L. Yakovleva, S.Yu. Delgado Reina, A.I. Plokhikh, O.G. Ospennikova, V.I. Gromov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 1, pp. 65–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatchikova, T.I., Yakovleva, I.L., Delgado Reina, S.Y. et al. Influence of warm deformation on the formation of a fragmented structure in low-carbon martensitic steels. Phys. Metals Metallogr. 117, 61–73 (2016). https://doi.org/10.1134/S0031918X16010117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16010117

Keywords

Navigation