Skip to main content
Log in

Magnetic circular dichroism in the hard X-ray range

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, “Absorption of circularly polarized X-rays in iron,” Phys. Rev. Lett. 58, 737–740 (1987).

    Article  Google Scholar 

  2. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, “X-ray circular dichroism as a probe of orbital magnetization,” Phys. Rev. Lett. 68, 1943–1946 (1992).

    Article  Google Scholar 

  3. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, “X-ray circular dichroism and local magnetic fields,” Phys. Rev. Lett. 70, 694–697 (1993).

    Article  Google Scholar 

  4. F. Wilhelm, “Magnetic materials probed with polarized X-ray spectroscopies,” Synchrotron Rad. News 26 (6), 2–5 (2013).

    Article  Google Scholar 

  5. J. Stöhr, “Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy,” J. Magn. Magn. Mater. 200, 470–497 (1999).

    Article  Google Scholar 

  6. H. Wende, “Recent advances in X-ray absorption spectroscopy,” Rep. Prog. Phys. 67, 2105–2182 (2004).

    Article  Google Scholar 

  7. T. Funk, A. Deb, S. J. George, H. Wang, S. P. Cramer, “X-ray magnetic circular dichroism—A high energy probe of magnetic properties,” Coord. Chem. Rev. 249, 3–30 (2005).

    Article  Google Scholar 

  8. T. Nakamura and M. Suzuki, “Recent progress of the X-ray magnetic circular dichroism technique for element specific magnetic analysis,” J. Phys. Soc. Jpn. 82, 021006 (2013).

    Article  Google Scholar 

  9. G. van der Laan and A. I. Figueroa, “X-ray magnetic circular dichroism—A versatile tool to study magnetism,” Coord. Chem. Rev. 277–278, 95–129 (2014).

    Article  Google Scholar 

  10. J. Stöhr and H. C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Heidelberg, 2006).

    Google Scholar 

  11. A. Rogalev, F. Wilhelm, N. Jaouen, J. Goulon, and J.-P. Kappler, “X-ray magnetic circular dichroism: Historical perspective and recent highlights,” in Magnetism: A Synchrotron Radiation Approach, Lecture Notes in Physics, Vol. 697, pp. 71–93 (2006).

    Google Scholar 

  12. G. Schütz, E. Goering, and H. Stoll, “Synchrotron radiation techniques based on X-ray magnetic circular dichroism,” in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (John Wiley & Sons, 2007), Vol. 3.

    Google Scholar 

  13. F. M. F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, FL, 2008).

    Book  Google Scholar 

  14. W. C. Röntgen, “Über eine neue Art von Strahlen,” Sitzber. Physik. Med. Ges. 137, 132–137 (1895).

    Google Scholar 

  15. J. J. Thomson, “The Röntgen Rays,” Nature 53, 391–392 (1896).

    Article  Google Scholar 

  16. B. Galitzine and A. Karnojitzky, “Recherches concernant les propriètès des rayons X,” C. R. Acad. Sci. Paris 122, 717–718 (1896).

    Google Scholar 

  17. R. Blondlot, “Sur la polarisation des rayons X,” C. R. Acad. Sci. Paris, 136, 284–287 (1903).

    Google Scholar 

  18. R. von Lieben, “Bemerkungen zur “Polarisation der Rontgenstrahlung”, Physik. Zeitschr 5, 72–74 (1904).

    Google Scholar 

  19. C. G. Barkla, “Polarised Röntgen radiation,” Phil. Trans A 204 (372–386), 467–479 (1905).

    Article  Google Scholar 

  20. J. C. Chapman, “Some experiments on polarized Röntgen radiation,” Philos. Mag. 25 (150), 792–802 (1913).

    Article  Google Scholar 

  21. A. H. Forman, “The effect of magnetization on the opacity of iron to Röntgen rays,” Phys. Rev. 3, 306–313 (1914).

    Article  Google Scholar 

  22. A. H. Forman, “The effect of magnetization on the opacity of iron to Röntgen rays,” Phys. Rev. 7, 119–124 (1916).

    Article  Google Scholar 

  23. A. H. Compton, “The absorption of gamma rays by magnetized iron,” Phys. Rev. 17, 38–41 (1921).

    Article  Google Scholar 

  24. J. A. Becker, “The effect of the magnetic field on the absorption of X-rays,” Phys. Rev. 20, 134–147 (1922).

    Article  Google Scholar 

  25. J. A. Becker, “The effect of a magnetic field on the absorption of X-rays,” Phys. Rev. 22, 320–323 (1923).

    Article  Google Scholar 

  26. W. Kartschagin and E. Tschetwerikova, “Zur Frage nach der magnetischen Drehung der polarisationsebene primärer Röntgenstrahlen,” Z. Phys. 39, 886–900 (1926).

    Article  Google Scholar 

  27. D. K. Froman, “The Faraday Effect with X-rays,” Phys. Rev. 41 (6), 693–700 (1932).

    Article  Google Scholar 

  28. J. L. Erskine and E. A. Stern, “Calculation of the M 2,3 Magneto-optical absorption spectrum of ferromagnetic nickel,” Phys. Rev. B: Solid. State 12, 5016–5024 (1975).

    Article  Google Scholar 

  29. H. S. Bennet and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137A, 448–461 (1965).

    Article  Google Scholar 

  30. J. Hrdý, E. Krouský, and O. Renner, “A search for Faraday rotation in X-ray region,” Phys. Status Solidi A 53, 143–146 (1979).

    Article  Google Scholar 

  31. M. Hart and A. R. D. Rodriguez, “Optical activity and the faraday effect at X-ray frequencies,” Philos. Mag. B. 43, 321–332 (1981).

    Article  Google Scholar 

  32. G. Schütz, E. Zech, E. Hagn, and P. Kienle, “Anisotropy of X-rays and spin dependence of the photoabsorption of circularly polarized soft X-rays in magnetized Fe,” Hyperfine Interact. 16, 1039–1042 (1983).

    Article  Google Scholar 

  33. E. Keller and E. A. Stern, “Magnetic XANES,” in Proc. of the EXAFS and Near Edge Structure III Conference, Ed. by K. O. Hodgson, B. Hedman, and J. E. Penner-Hahn, Springer Proc. in Phys., 1984, p. 507–508.

    Chapter  Google Scholar 

  34. B. T. Thole, G. van der Laan, and G. A. Sawatzky, “Strong Magnetic dichroism predicted in the M 4,5 X-ray absorption spectra of magnetic rare-earth materials,” Phys. Rev. Lett. 55, 2086–2088 (1985).

    Article  Google Scholar 

  35. G. van der Laan, B. T. Thole, G. A. Sawatzky, J. B. Goekoop, J. C. Fuggle, J.-M. Esteva, R. Karnatak, J. P. Remeika, H. A. Dabkowska, “Experimental proof of magnetic X-ray dichroism,” Phys. Rev. B: Condens. Matter 34, 6529–6531 (1986).

    Article  Google Scholar 

  36. S. P. Collins, M. J. Cooper, A. Brahmiat, D. Laundy, T. Pitkanen, “Magnetic near-edge structure in iron,” J. Phys.: Condens. Matter 1, 323–326 (1989).

    Google Scholar 

  37. G. Schutz, R. Frahm, P. Mautner, R. Wienke, W. Wagner, W. Wilhelm, P. Kienle, “Spin dependent extended X-ray absorption fine structure: Probing magnetic short-range order,” Phys. Rev. Lett. 62, 2620–2623 (1989).

    Article  Google Scholar 

  38. C. C. Kao, J. B. Hastings, E. D. Johnson, D. P. Siddons, G. C. Smith, G. A. Prinz, “Magnetic resonance exchange scattering at the iron L II and L III edges,” Phys. Rev. Lett. 65, 373–376 (1990).

    Article  Google Scholar 

  39. C. T. Chen, F. Sette, Y. Ma, and S. Modesti, “Soft X-ray magnetic circular dichroism at the L 2,3 Edges of Nickel,” Phys. Rev. B: Condens. Matter 42, 7262–7265 (1990).

    Article  Google Scholar 

  40. D. P. Siddons, M. Hart, Y. Amemiya, and J. B. Hastings, “X-ray optical activity and the Faraday effect in cobalt and its compounds,” Phys. Rev. Lett. 64, 1967–1970 (1990).

    Article  Google Scholar 

  41. M. Sacchi and A. Mirone, “Resonant reflectivity from a Ni(110) crystal: magnetic effects at the Ni 2p edges using linearly and circularly polarized photons,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 8408–8415 (1998).

    Article  Google Scholar 

  42. O. Hellwig, J. B. Kortright, K. Takano, and E. E. Fullerton, “Switching behavior of Fe–Pt/Ni–Fe exchange spring films studied by resonant soft X-ray magnetooptical Kerr effect,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 11694–11698 (2000).

    Article  Google Scholar 

  43. H.-Ch. Mertins, P. M. Oppeneer, J. Kunes, A. Gaupp, D. Abramsohn, F. Schäfers, “Observation of the X-ray magneto-optical Voigt effect,” Phys. Rev. Lett. 87, 047401 (2001).

    Article  Google Scholar 

  44. J. Goulon, C. Goulon-Ginet, A. Rogalev, V. Gotte, C. Malgrange, C. Brouder, C. R. Natoli, “X-ray natural circular dichroism in a uniaxial gyrotropic single crystal of LiIO3,” J. Chem. Phys. 108, 6394–6403 (1998).

    Article  Google Scholar 

  45. J. Goulon, A. Rogalev, C. Goulon-Ginet, G. Benayoun, L. Paolasini, C. Brouder, C. Malgrange, P. A. Metcalf, “First observation of non-reciprocal X-ray gyrotropy,” Phys. Rev. Lett. 85, 4385–4388 (2000).

    Article  Google Scholar 

  46. J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, P. Carra, D. Cabaret, C. Brouder, “X-ray magnetochiral dichroism: A new spectroscopic probe of parity nonconserving magnetic solids,” Phys. Rev. Lett. 88, 237401 (2002).

    Article  Google Scholar 

  47. R. Sessoli, M.-E. Boulon, A. Caneschi, M. Mannini, L. Poggini, F. Wilhelm, A. Rogalev, “Strong magnetochiral dichroism in a paramagnetic molecular helix observed by hard X-rays,” Nature Physics 11, 69–74 (2015).

    Article  Google Scholar 

  48. P. Carra, A. Jerez, and I. Marri, “X-ray dichroism in noncentrosymmetric crystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 045111 (2003).

    Article  Google Scholar 

  49. J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, P. Carra, I. Marri, C. Brouder, “X-ray optical activity: Application of sum rules,” J. Exp. Theor. Phys 97, 402–431 (2003).

    Article  Google Scholar 

  50. E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (University Press, Cambridge, 1951).

    Google Scholar 

  51. A. F. Starace, “Potential barrier effects in photoabsorption. 1. General theory,” Phys. Rev. B: Solid State 5, 1773–1784 (1972).

    Article  Google Scholar 

  52. H. Wang, P. Ge, C. G. Riordan, S. Brooker, C. G. Woomer, T. Collins, C. A. Melendres, O. Graudejus, N. Bartlett, S. P. Cramer, “Integrated X-ray L absorption spectra. Counting holes in Ni complexes,” J. Phys. Chem. B 102, 8343–8346 (1998).

    Article  Google Scholar 

  53. S. Brossard, F. Volatron, L. Lisnard, M.-A. Arrio, L. Catala, C. Mathoniere, T. Mallah, “ C. Cartier Dit Moulin C., Rogalev A., Wilhelm F., Smekhova A., Ph. Sainctavit, “Investigation of the photoinduced magnetization of copper octacyanomolybdates nanoparticles by X-ray magnetic circular dichroism,” J. Am. Chem. Soc. 134, 222–228 (2012).

    Article  Google Scholar 

  54. B. T. Thole and G. van der Laan, “Linear relation between X-ray absorption branching ratio and valence-band spin-orbit expectation value,” Phys. Rev. A 38, 1943–1947 (1988).

    Article  Google Scholar 

  55. G. van der Laan, K. T. Moore, J. G. Tobin, B. W. Chung, M. A. Wall, A. J. Schwartz, “Applicability of the spin-orbit sum rule for the actinide 5f states,” Phys. Rev. Lett. 93, 097401 (2004).

    Article  Google Scholar 

  56. K. T. Moore and G. van der Laan, “Nature of the 5f states in actinide metals,” Rev. Mod. Phys. 81, 235–298 (2009).

    Article  Google Scholar 

  57. F. Wilhelm, R. Eloirdi, J. Rusz, R. Springell, E. Colineau, J. C. Griveau, P. M. Oppeneer, R. Caciuffo, A. Rogalev, and G. H. Lander, “X-ray magnetic circular dichroism experiments and theory of transuranium Laves phase compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 88, 024424 (2013).

    Article  Google Scholar 

  58. G. Van der Laan and B. T. Thole, “X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions,” Phys. Rev. B: Condens. Matter. 53, 14458–14469 (1996).

    Article  Google Scholar 

  59. U. Fano, “Spin orientation of photoelectrons ejected by circularly polarized light,” Phys. Rev. 178, 131–136 (1969).

    Article  Google Scholar 

  60. H. Ebert, J. Stohr, S. S. P. Parkin, M. Samant, A. Nilsson, “L-edge X-ray adsorption in fcc and bcc Cu metal: Comparison of experimental and first-principles theoretical results,” Phys. Rev. B: Condens. Matter. 53, 16067–16073 (1996).

    Article  Google Scholar 

  61. M. Altarelli, “Orbital-magnetization sum rule for X-ray circular dichroism–A simple proof,” Phys. Rev. B: Condens. Matter. 47, 597–598 (1993).

    Article  Google Scholar 

  62. G. van der Laan, “Sum rules and fundamental spectra of magnetic X-ray dichroism in crystal field symmetry,” J. Phys. Soc. Jpn. 63, 2393–2400 (1994).

    Article  Google Scholar 

  63. G. van der Laan, “Microscopic origin of magnetocrystalline anisotropy in transition metal thin films,” J. Phys.: Condens. Matter 10, 3239–3254 (1998).

    Google Scholar 

  64. J. Stöhr and H. König, “Determination of spinand orbital-moment anisotropies in transitionmetals by angle-dependent X-ray magnetic circular dichroism,” Phys. Rev. Lett. 75, 3748–3751 (1995).

    Article  Google Scholar 

  65. Ph. Sainctavit, M.-A. Arrio, and Ch. Brouder, “Analytic calculation of the spin sum rule at the L 2,3 Edges of Cu2+,” Phys. Rev. B: Condens. Matter 52, 12766–12769 (1995).

    Article  Google Scholar 

  66. S. P. Collins, D. Laundy, C. Tang, and G. van der Laan, “An investigation of uranium M 4,5 Edge Magnetic X-ray circular dichroism in US,” J. Phys.: Condens. Matter 7, 9325–9342 (1995).

    Google Scholar 

  67. N. Kernavanois and J.-X. Boucherle, P. Dalmas de Réotier, F. Givord, E. Lelièvre-Berna, E. Ressouche, A. Rogalev, J.-P. Sanchez, N. Sato, and A. Yaouanc, “Polarized neutron scattering and X-ray magnetic circular dichroism studies of the heavy-fermion superconductor UNi2Al3,” J. Phys.: Condens. Matter 12, 7857–7867 (2000).

    Google Scholar 

  68. D. Schmitz, C. Schmitz-Antoniak, A. Warland, M. Darbandi, S. Haldar, S. Bhandary, O. Eriksson, B. Sanyal, H. Wende, “The dipole moment of the spin density as a local indicator for phase transitions,” Sci. Rep 4, 5760 (2014).

    Article  Google Scholar 

  69. R. Wu, D. Wang, and A. J. Freeman, “First principles investigation of the validity and range of applicability of the X-ray magnetic circular dichroism sum rule,” Phys. Rev. Lett. 71, 3581–3584 (1993).

    Article  Google Scholar 

  70. A. Ankudinov and J. J. Rehr, “Sum rules for polarization-dependent X-ray absorption,” Phys. Rev. B: Condens. Matter 51, 1282–1285 (1995).

    Article  Google Scholar 

  71. H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59, 1665–1736 (1996).

    Article  Google Scholar 

  72. V. Yu. Irkhin and M. I. Katsnelson, “Sum rules for X-ray magnetic circular dichroism spectra in strongly correlated ferromagnets,” Eur. Phys. J. B 45, 1–4 (2005).

    Article  Google Scholar 

  73. R. Benoist, P. Carra, and O. K. Andersen, “Band structure and atomic sum rules for X-ray dichroism,” Eur. Phys. J. B 18, 193–196 (2000).

    Article  Google Scholar 

  74. X. Wang, T. C. Leung, B. N. Harmon, and P. Carra, “Circular magnetic X-ray dichroism in the heavy rareearth metals,” Phys. Rev. B: Condens. Matter 47, 9087–9090 (1993).

    Article  Google Scholar 

  75. A. Ankudinov, J. J. Rehr, H. Wende, A. Scherz, and K. Baberschke, “Spin-dependent sum rules for X-ray absorption spectra,” Europhys. Lett. 66, 441–447 (2004).

    Article  Google Scholar 

  76. P. Carra, H. Konig, B. T. Thole, and M. Altarelli, “Magnetic X-ray dichroism—General features of dipolar and quadrupolar spectra,” Physica A 192, 182–190.

  77. A. Scherz, H. Wende, K. Baberschke, J. Minar, D. Benea, and H. Ebert, “Relation between L 2,3 XMCD and the magnetic ground-state properties for the early 3d element V,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 184401 (2002).

    Article  Google Scholar 

  78. K. W. Edmonds, N. R. S. Farley, T. K. Johal, G. van der Laan, R. P. Campion, B. L. Gallagher, and C. T. Foxon, “Ferromagnetic moment and antiferromagnetic coupling in (Ga:Mn)As thin films,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 064418 (2005).

    Article  Google Scholar 

  79. J. Vogel, A. Fontaine, V. Cros, F. Petroff, J.-P. Kappler, G. Krill, A. Rogalev, and J. Goulon, “Structure and magnetism of Pd in Pd/Fe multilayers studied by X-ray magnetic circular dichroism at the Pd L 2,3 Edges,” Phys. Rev. B: Condens. Matter 55, 3663–3669 (1997).

    Article  Google Scholar 

  80. F. Wilhelm, P. Poulopoulos, G. Ceballos, H. Wende, K. Baberschke, P. Srivastava, D. Benea, H. Ebert, M. Angelakeris, N. K. Flevaris, D. Niarchos, A. Rogalev, and N. B. Brookes, “Layer-resolved magnetic moments in Ni/Pt multilayers,” Phys. Rev. Lett. 85, 413–416 (2000).

    Article  Google Scholar 

  81. M. A. Laguna-Marco, D. Haskel, N. Souza-Neto, J. Lang, V. Krishnamurthy, S. Chikara, Cao. Gang, M. van Veenendaal, “Orbital magnetism and spinorbit effects in the electronic structure of BaIrO3,” Phys. Rev. Lett. 105, 216407 (2010).

    Article  Google Scholar 

  82. A. Rogalev, J. Goulon, C. Goulon-Ginet, and C. Malgrange, “Instrumentation developments for polarization dependent X-ray Spectroscopies at the ESRF beamline ID12A,” Springer Lecture Notes in Physics 565, 60–86 (2001).

    Article  Google Scholar 

  83. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1987).

    Google Scholar 

  84. P. Elleaume, “Helios: a new type of linear/helical undulator,” J. Synchrotron Rad. 1, 19–26 (1994).

    Article  Google Scholar 

  85. S. Sasaki, K. Kabuno, T. Takada, T. Shimada, K. Yanagida, Y. Miyahara, “Design of a new type of planar undulator for generating variably polarized radiation,” Nucl. Inst. Meth. A 331, 763–767 (1993).

    Article  Google Scholar 

  86. A. Rogalev, J. Goulon, G. Benayoun, P. Elleaume, J. Chavanne, Ch. Penel, and P. van Vaerenbergh, “Hybrid electromagnet/permanent magnet helical undulator: First results,” SPIE Proc. 3773, 275–283 (1999).

    Article  Google Scholar 

  87. K. Tsuchiya, T. Shioya, T. Aoto, K. Harada, T. Obina, M. Sakamaki, and K. Amemiya, “Operation of a fast polarization-switching source at the photon factory,” J. Phys.: Conf. Ser 425, 132017 (2013).

    Google Scholar 

  88. J. Goulon, N. B. Brookes, C. Gauthier, J. Goedkoop, C. Goulon-Ginet, M. Hagelstein, and A. Rogalev, “Instrumentation Development for ESRF Beamlines,” Physica A 208–209, 199–202 (1995).

    Article  Google Scholar 

  89. V. A. Belyakov and V. E. Dmitrienko, “Polarization phenomena in X-ray optics,” Sov. Phys. Uspekhi 32, 697–719 (1989).

    Article  Google Scholar 

  90. C. G. Giles, C. Malgrange, J. Goulon, F. de Bergevin, C. Vettier, E. Dartyge, A. Fontain, C. Giorgetti, S. Pizzini, “Energy-dispersive phase plate for magnetic circular dichroism experiments in the X-ray range,” J. Appl. Crystallogr. 27, 232–240 (1994).

    Article  Google Scholar 

  91. K. Hirano and H. Maruyama, “Application of an X-ray transmission phase plate to measurements of X-ray Magnetic Circular Dichroism,” Jpn. J. Appl. Phys., L1272–L1274 (1997).

    Google Scholar 

  92. M. Suzuki, N. Kawamura, M. Mizumaki, A. Urata, H. Maruyama, S. Goto, T. Ishikawa, “Helicity-Modulation Technique Using Diffractive Phase Retarder for Measurements of X-ray Magnetic Circular Dichroism,” Jpn. J. Appl. Phys. 37, L1488–L1490 (1998).

    Article  Google Scholar 

  93. D. Haskel, Y. C. Tseng, J. C. Lang, and S. Sinogeikin, “Instrument for X-ray magnetic circular dichroism measurements at high pressures,” Rev. Sci. Instrum. 78, 083904 (2007).

    Article  Google Scholar 

  94. L. Bouchenoire, S. D. Brown, P. Thompson, M. G. Cain, M. Stewart, and M. J. Cooper, “Development of a novel piezo driven device for fast helicity reversal experiments on the XMaS Beamline,” AIP Conf. Proc. 879, 1679–1682 (2007).

    Article  Google Scholar 

  95. C. Malgrange, C. Carvalho, L. Braicovich, and J. Goulon, “Transfer of circular polarization in Bragg crystal X-ray monochromators,” Nucl. Instrum. Methods A 308, 390–396 (1991).

    Article  Google Scholar 

  96. T. Ichikawa, “X-ray monochromators for circularly polarized incident radiation,” Rev. Sci. Instrum. 60, 2058–2061 (1989).

    Article  Google Scholar 

  97. B. K. Vainshtein, Modern Crystallography (Nauka, Moscow, 1981; Springer, Berlin, 1988).

    Google Scholar 

  98. V. E. Dmitrienko and V. A. Belyakov, “On the polarization of X-rays diffracted in mosaic crystals,” Acta Cristallogr. A 36, 1044–1050 (1980).

    Article  Google Scholar 

  99. V. E. Dmitrienko and V. A. Belyakov, “Polarisation conversion of X-rays in single crystals,” Sov. Tech. Phys. Lett 6, 621–622 (1980).

    Google Scholar 

  100. J. Goulon, C. Malgrange, C. Giles, C. Neumann, A. Rogalev, E. Moguiline, F. de Bergevin, and C. Vettier, “Design of an X-ray phase plate analyzer to measure the circular polarization rate of a helical undulator source,” J. Synchrotron Rad 3, 272–281 (1996).

    Article  Google Scholar 

  101. L. Bouchenoire, R. J. H. Morris, and Th. P. A. Hase, “A Silicon 111 phase retarder for producing circularly polarized X-rays in the 2.1-3 keV energy Range,” Appl. Phys. Lett. 101, 064107 (2012).

    Article  Google Scholar 

  102. G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten Als Abbildende Systeme Fur Weiche Rontgenstrahlen,” Optik 29, 577–585 (1969).

    Google Scholar 

  103. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384 (6604), 49–51 (1996).

    Article  Google Scholar 

  104. R. Signorato, J. Goulon, A. Rogalev, C. GoulonGinet, and J. J. Ferme, “Vertically focusing reflective optics using two bendable CVD SiC mirrors,” SPIE Proc. 2856, 343–354 (1996).

    Article  Google Scholar 

  105. C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. Ho, E. Pellegrin, and F. Sette, “Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt,” Phys. Rev. Lett. 75, 152–155 (1995).

    Article  Google Scholar 

  106. J. Goulon, C. Goulon-Ginet, R. Cortes, and J. M. Dubois, “On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements,” J. Phys. Fr. 43, 539–548 (1982).

    Article  Google Scholar 

  107. D. Haskel, Y. C. Tseng, J. C. Lang, and S. Sinogeikin, “Instrument for X-ray magnetic circular dichroism measurements at high pressures,” Rev. Sci. Intrum 78, 083904 (2007).

    Article  Google Scholar 

  108. N. Kawamura, N. Ishimatsu, and H. Maruyama, “X-ray magnetic spectroscopy at high pressure: performance of SPring-8 BL39XU,” J. Synchrotron Rad 16, 730–736 (2009).

    Article  Google Scholar 

  109. F. Baudelet, Q. Kong, L. Nataf, J. D. Cafun, A. Congeduti, A. Monza, S. Chagnot, and J. P. Itie, “ODE: a new beam line for high pressure XAS and XMCD studies at SOLEIL,” High Pressure Res. 31, 136High Pressure Research139 (2011).

    Google Scholar 

  110. R. Torchio, O. Mathon, and S. Pascarelli, “XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals,” Coord. Chem. Rev. 277–278, 80–94 (2014).

    Article  Google Scholar 

  111. W. Gudat and C. Kunz, “Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range,” Phys. Rev. Lett. 29, 169–172 (1972).

    Article  Google Scholar 

  112. R. Nakajima, J. Stohr, and Y. U. Idzerda, “Electronyield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co and Ni,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 6421–6429 (1999).

    Article  Google Scholar 

  113. P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, and C. Carbone, “Localized magnetic states of Fe, Co and Ni impurities on alkali metal films,” Phys. Rev. Lett. 88, 047202 (2002).

    Article  Google Scholar 

  114. F. M. F. de Groot, M.-A. Arrio, P. Sainctavit, Ch. Cartier, C. T. Chen, “Fluorescence yield detection: Why it does not measure the X-ray absorption cross-section,” Solid State Commun. 92, 991–995 (1994).

    Article  Google Scholar 

  115. C. F. Hague, J.-M. Mariot, G. Y. Guo, K. Hricovini, and G. Krill, “Coster-Kronig contributions to magnetic circular dichroism in the L 2,3 X-ray fluorescence of iron,” Phys. Rev. B: Condens. Matter 51, 1370–1373 (1995).

    Article  Google Scholar 

  116. M. Pompa, A. M. Flank, P. Lagarde, J. C. Rife, I. Stekhin, M. Nakazawa, H. Ogasawara, and A. Kotani, “Experimental and theoretical comparison between absorption, total electron yield, and fluorescence spectra of rare-earth M 5 Edges,” Phys. Rev. B: Condens. Matter 56, 2267–2272 (1997).

    Article  Google Scholar 

  117. M. van Veenendaal, J. B. Goedkoop, and B. T. Thole, “Polarized X-ray fluorescence as a probe of ground state properties,” Phys. Rev. Lett. 77, 1508–1511 (1996).

    Article  Google Scholar 

  118. L. Troger, D. Arvanitis, K. Baberschke, H. Michaelis, U. Grimm, E. Zschech, “Full correction of the self absorption in soft fluorescence X-ray absorption fine structure,” Phys. Rev. B: Condens. Matter 46, 3283–3289 (1992).

    Article  Google Scholar 

  119. P. Pfalzer, J.-P. Urbach, M. Klemm, S. Horn, A. I. Frenkel, and J. P. Kirkland, “Elimination of selfabsorption in fluorescence hard-X-ray absorption spectra,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 9335–9339 (1999).

    Article  Google Scholar 

  120. F. Wilhelm, N. Jaouen, A. Rogalev, W. G. Stirling, R. Springell, S. W. Zochowski, A. M. Beesley, S. D. Brown, M. F. Thomas, G. H. Lander, S. Langridge, R. C. C. Ward, and M. R. Wells, “X-ray magnetic circular dichroism study of uranium/iron multilayers,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 024425 (2007).

    Article  Google Scholar 

  121. K. Dumesnil, C. Dufour, P. Mangin, and A. Rogalev, “Magnetic springs in exchange-coupled DyFe2/YFe2 Superlattices: An element-selective X-ray magnetic circular dichroism study,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 094401 (2002).

    Article  Google Scholar 

  122. J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, and G. Goujon, “Element-selective X-ray detected magnetic resonance: A novel application of synchrotron radiation,” J. Synchrotron Rad. 14, 257–271 (2007).

    Article  Google Scholar 

  123. E. Arenholz and S. O. Prestemon, “Design and performance of an eight pole resistive magnet for soft X-ray magnetic dichroism measurements,” Rev. Sci. Instrum. 76, 083908 (2005).

    Article  Google Scholar 

  124. G. van der Laan, R. V. Chopdekar, Y. Suzuki, and E. Arenholz, “Strain-induced changes in the electronic structure of MnCr2O4 thin films probed by X-ray magnetic circular dichroism,” Phys. Rev. Lett. 105, 067405 (2010).

    Article  Google Scholar 

  125. J. Goulon, A. Rogalev, G. Goujon, C. Gauthier, E. Moguiline, A. Sole, S. Feite, F. Wilhelm, N. Jaouen, C. Goulon-Ginet, P. Dressler, P. Rohr, M.-O. Lampert, and R. Henck, “Advanced detection systems for X-ray fluorescence excitation spectroscopy,” J. Synchrotron Rad. 12, 57–69 (2005).

    Article  Google Scholar 

  126. O. Mathon, P. van der Linden, T. Neisius, M. Sikora, J. M. Michalik, C. Ponchut, J. M. De Teresa, and S. Pascarelli, “XAS and XMCD under high magnetic field and low temperature on the energy-dispersive beamline of the ESRF,” J. Synchrotron Rad. 14, 409–415 (2007).

    Article  Google Scholar 

  127. Y. H. Matsuda, Z. W. Ouyang, H. Nojiri, T. Inami, K. Ohwada, M. Suzuki, N. Kawamura, A. Mitsuda, and H. Wada, “X-ray magnetic circular dichroism of a valence fluctuating state in Eu at high magnetic fields,” Phys. Rev. Lett. 103, 046402 (2009).

    Article  Google Scholar 

  128. A. Rogalev and F. Wilhelm, “X-ray magnetic circular dichroism under high magnetic field,” Synchrotron Rad. News 26 (6), 33–36 (2013).

    Article  Google Scholar 

  129. S. M. Ramos, E. N. Hering, G. Lapertot, F. Wilhelm, A. Rogalev, F. Baudelet, and D. Braithwaite, “XMCD measurements under pressure confirm ferromagnetism in YbCu2Si2 but find none in YbRh2Si2,” J. Phys.: Conf. Ser 592, 012015 (2015).

    Google Scholar 

  130. W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, “Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets,” Nature 416 (6879), 406–409 (2002).

    Article  Google Scholar 

  131. I. Letard and Ph. Sainctavit, Ch. Cartier, J.-P. Kappler J.-P., P. Ghigna, D. Gatteschi, and B. Doddi, “Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK,” J. Appl. Phys. 101, 113920 (2007).

    Article  Google Scholar 

  132. M. Brown, R. E. Peierls, and E. A. Stern, “White Lines in X-ray Absorption,” Phys. Rev. B: Solid State 15, 738–744 (1977).

    Article  Google Scholar 

  133. L. F. Mattheiss and R. E. Dietz, “Relativistic tightbinding calculation of core-valence transitions in Pt and Au,” Phys. Rev. B: Condens. Matter 22, 1663–1676 (1980).

    Article  Google Scholar 

  134. J. Bartolome, F. Bartolome, L. M. Garcia, E. Roduner, Y. Akdogan, F. Wilhelm, and A. Rogalev, “Magnetization of Pt13 clusters supported in a NaY zeolite: A XANES and XMCD study,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 014404 (2009).

    Article  Google Scholar 

  135. A. Rogalev, J. Goulon, F. Wilhelm, Ch. Brouder, A. Yaresko, J. Ben Youssef, and M. V. Indenbom, “Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films,” J. Magn. Magn. Mater. 321, 3945–3962 (2009).

    Article  Google Scholar 

  136. P. Strange, “Magnetic absorption and sumrules in itinerant magnets,” J. Phys.: Condens. Matter 6, L491–L495 (1994).

    Google Scholar 

  137. G. Y. Guo, “What does the K-edge X-ray magnetic circular dichroism spectrum tell us?,” J. Phys.: Condens. Matter 8, L747–L752 (1996).

    Google Scholar 

  138. H. Ebert, V. Popescu, and D. Ahlers, “Fully relativistic theory for magnetic exafs: Formalism and applications,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 7156–7165 (1999).

    Article  Google Scholar 

  139. P. Bruno, “Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers,” Phys. Rev. B: Condens. Matter 39, 865–868 (1989).

    Article  Google Scholar 

  140. N. Nagaosa, J. Sinova, and S. Onoda, A. H. MacDonald, N. P. Ong, “Anomalous Hall effect,” Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  141. I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, “Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer,” Nat. Mater. 9, 230–234 (2010).

    Google Scholar 

  142. S. W. Cheong and M. Mostovoy, “Multiferroics: A magnetic twist for ferroelectricity,” Nat. Mater. 6, 13–20 (2007).

    Article  Google Scholar 

  143. M. Z. Hasan and C. L. Kane, “Colloquium: Topological INSULATORS,” Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  Google Scholar 

  144. K. Moore and G. van der Laan, “Nature of the 5f States in actinide metals,” Rev. Mod. Phys. 81, 235–298 (2009).

    Article  Google Scholar 

  145. P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, “Multipolar interactions in f-electron systems: The paradigm of actinide dioxides,” Rev. Mod. Phys. 81, 807–863 (2009).

    Article  Google Scholar 

  146. N. J. Curro, T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao, “Unconventional superconductivity in PuCoGa5,” Nature 434 (7033), 622–625 (2005).

    Article  Google Scholar 

  147. J. A. Mydosh and P. M. Oppeneer, “Colloquium: Hidden Order, superconductivity, and magnetism: The unsolved case of URu2Si2,” Rev. Mod. Phys. 83, 1301–1322 (2011).

    Article  Google Scholar 

  148. G. H. Lander, “Spin and orbital magnetic moments in actinide compounds,” Phys. Scr. 44(1), 33–37 (1991).

    Article  Google Scholar 

  149. M. Finazzi, Ph. Sainctavit, A.-M. Dias, J.-P. Kappler, G. Krill, J.-P. Sanchez, P. Dalmas de Reotier, A. Yaouanc, A. Rogalev, and J. Goulon, “X-ray magnetic circular dichroism at the U M 4,5 absorption edges of UFe2,” Phys. Rev. B: Condens. Matter 55, 3010–3014 (1997).

    Article  Google Scholar 

  150. N. Magnani, R. Caciuffo, F. Wilhelm, E. Colineau, R. Eloirdi, J.-C. Griveau, J. Rusz, P. M. Oppeneer, A. Rogalev, and G. H. Lander, “Magnetic polarization of the americium J = 0 ground state in AmFe2,” Phys. Rev. Lett. 114, 097203 (2015).

    Article  Google Scholar 

  151. M. Kučera, J. Kuneš, A. Kolomiets, M. Diviš, A. V. Andreev, V. Sechovsky, J. P. Kappler, and A. Rogalev, “X-ray magnetic circular dichroism studies of 5f magnetism in UCoAl and UPtAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 144405 (2002).

    Article  Google Scholar 

  152. T. Okane, T. Ohkochi, T. Inami, Y. Takeda, S.-I. Fujimori, N. Kawamura, M. Suzuki, S. Tsutsui, H. Yamagami, A. Fujimori, A. Tanaka, D. Aoki, Y. Homma, Y. Shiokawa, E. Yamamoto, Y. Haga, A. Nakamura, and Y. Onuki, “Element and orbital-specific observation of two-step magnetic transition in NpNiGa5: X-ray magnetic circular dichroism study,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 104419 (2009).

    Article  Google Scholar 

  153. A. Hen, E. Colineau, R. Eloirdi, J.-C. Griveau, N. Magnani, F. Wilhelm, A. Rogalev, J.-P. Sanchez, A. B. Shick, I. Halevy, I. Orion, R. Caciuffo, “LowTemperature Magnetic Properties of NpNi5,” Phys. Rev. B: Condens. Matter Mater. Phys. 90, 054408 (2014).

    Article  Google Scholar 

  154. G. H. Lander, A. T. Aldred, B. D. Dunlap, and G. K. Shenoy, “Magnetic properties of the AnFe2 compounds (An = U, Np, Pu, and Am), Physica B + C 86–88, 152–154 (1977).

    Google Scholar 

  155. B. Lebech, M. Wulff, G. H. Lander, J. Rebizant, J. C. Spirlet, and A. Delapalme, “Neutron diffraction studies of the crystalline and magnetic properties of UFe2,” J. Phys.: Condens. Matter 1, 10229–10248 (1989).

    Google Scholar 

  156. M. Wulff, G. H. Lander, J. Rebizant, J. C. Spirlet, B. Lebech, C. Broholm, and P. J. Brown, “Magnetic moments and Pu form factor in PuFe2,” Phys. Rev. B: Condens. Matter 37, 5577–5585 (1988).

    Article  Google Scholar 

  157. A. V. Andreev, A. V. Deryagin, R. Z. Levitin, A. S. Markosyan, and M. Zelený, “Magnetic anisotropy of the intermetallic compound UFe2,” Phys. Status Solidi A 52, K13–K15 (1979).

    Article  Google Scholar 

  158. M. Wulff, G. H. Lander, B. Lebech, and A. Delapalme, “Cancellation of Orbital and Spin Magnetism in UFe2,” Phys. Rev. B: Condens. Matter 39, 4719–4721 (1989).

    Article  Google Scholar 

  159. W. T. Carnall, “A Systematic analysis of the spectra of trivalent actinide chlorides in D 3h site symmetry,” J. Chem. Phys. 96, 8713–8726 (1992).

    Article  Google Scholar 

  160. P. D. de Reotier, J.-P. Sanchez, A. Yaouanc, M. Finazzi, Ph. Sainctavit, G. Krill, J.-P. Kappler, J. Goedkoop, J. Goulon, C. Goulon-Ginet, A. Rogalev, and O. Vogt, “Investigation of uranium M IV,V edges in USb0.5Te0.5 by X-ray magnetic circular dichroism,” J. Phys.: Condens. Matter 9, 3291–3296 (1997).

    Google Scholar 

  161. C. Sorg, A. Scherz, K. Baberschke, H. Wende, F. Wilhelm, A. Rogalev, S. Chadov, J. Minár, and H. Ebert, “Detailed fine structure of X-ray magnetic circular dichroism spectra: Systematics for heavy rare-earth magnets,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 064428 (2007).

    Article  Google Scholar 

  162. G. Schütz, M. Knulle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, and R. Frahm, “Spin-dependent photoabsorption at the L-edges of ferromagnetic Gd and Tb metal,” Z. Phys. B: Condens. Matter 73, 67–75 (1988).

    Article  Google Scholar 

  163. P. Carra and M. Altarelli, “Dichroism in the X-ray absorption spectra of magnetically ordered systems,” Phys. Rev. Lett. 64, 1286–1288 (1990).

    Article  Google Scholar 

  164. H. Ebert, G. Schütz, and W. M. Temmerman, “Theoretical study of the magnetic X-ray dichroism of hcpGd,” Solid State Commun. 76, 475–478 (1990).

    Article  Google Scholar 

  165. Ch. Giorgetti, E. Dartyge, Ch. Brouder, F. Baudelet, C. Meyer, S. Pizzini, A. Fontaine, and R.-M. Galera, “Quadrupolar effect in X-ray magnetic circular dichroism,” Phys. Rev. Lett. 75, 3186–3189 (1995).

    Article  Google Scholar 

  166. A. L. Ankudinov, J. J. Rehr, H. Wende, A. Scherz, and K. Baberschke, “Spin-dependent sum rules for X-ray absorption spectra,” Europhys. Lett. 66, 441–447 (2004).

    Article  Google Scholar 

  167. A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, “Parallel calculation of electron multiple scattering using Lanczos algorithms,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104107 (2002).

    Article  Google Scholar 

  168. J. Van Elp, S. J. George, J. Chen, G. Peng, C. T. Chen, L. H. Tjeng, G. Maigs, H. J. Lin, Z. H. Zhou, M. W. W. Adams, B. G. Searle, and S. P. Cramer, “Soft X-ray magnetic circular dichroism: A probe for studying paramagnetic bioinorganic systems,” Proc. Natl. Acad. Sci. USA 90, 9664–9667 (1993).

    Article  Google Scholar 

  169. J. Ph. Schille, Ph. Sainctavit, Ch. Cartier, D. Lefebvre, C. Brouder, J. P. Kappler, and G. Krill, “Magnetic circular X-ray dichroism at high magnetic field and low temperature in ferrimagnetic HoCo2 and Paramagnetic Ho2O3,” Solid State Commun. 85, 787–791 (1993).

    Article  Google Scholar 

  170. P. D. de Reotier, A. Yaouanc, G. van der Laan, N. Kernavanois, J.-P. Sanchez, J. L. Smith, A. Hiess, A. Huxley, and A. Rogalev, “Probing the magnetic 5f density of states above the Fermi level in metallic uranium compounds by X-ray magnetic circular dichroism,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 10606–10609 (1999).

    Article  Google Scholar 

  171. C. Neumann, B. W. Hoogenboom, A. Rogalev, and J. B. Goedkoop, “Crystal field effects in the L 2,3 XMCD of rare earth insulators,” Solid State Commun. 110, 375–379 (1999).

    Article  Google Scholar 

  172. B. J. Ruck, H. J. Trodahl, J. H. Richter, J. C. Cezar, F. Wilhelm, A. Rogalev, and V. N. Antonov, “Binh Do Le, and C. Meyer, "Magnetic state of EuN: X-ray magnetic circular dichroism at the Eu M 4,5 and L 2,3 absorption edges,” Phys. Rev. B: Condens. Matter Mater. Phys. 83, 174404 (2011).

    Article  Google Scholar 

  173. M. Suzuki, N. Kawamura, H. Miyagawa, J. S. Garitaonandia, Y. Yamamoto, and H. Hori, “Measurement of a Pauli and orbital paramagnetic state in bulk gold using X-ray magnetic circular dichroism spectroscopy,” Phys. Rev. Lett. 108, 047201 (2012).

    Article  Google Scholar 

  174. R. M. White, Quantum Theory of Magnetism (McGraw-Hill, New York, 1970; Springer, Berlin, 1983; Mir, Moscow, 1985).

    Google Scholar 

  175. R. Kubo and Y. Obata, “Note on the paramagnetic susceptibility and the gyromagnetic ratio in metals,” J. Phys. Soc. Jpn. 11, 547–550 (1956).

    Article  Google Scholar 

  176. J. A. Seitchik, A. C. Gossard, and V. Jaccarino, Knight shifts and susceptibilities of transition metals: palladium. Phys. Rev 136, A1119–A1125 (1964).

    Google Scholar 

  177. H. Ebert and S. Man’kovsky, “Field-induced magnetic circular X-ray dichroism in paramagnetic solids: A new magneto-optical effect,” Phys. Rev. Lett. 90, 077404 (2003).

    Article  Google Scholar 

  178. K. Adachi, D. Bonnenberg, J. J. M. Franse, R. Gersdorf, K. A. Hempel, K. Kanematsu, S. Misawa, M. Shiga, M. B. Stearns, H. P. J. Wijn, Landolt-Börnstein, New series. Magnetic Properties of Metals: 3d, 4d, and 5d Elements, Alloys, and Compounds, Ed. by H. P. J. Wijn, Vol. III/19a (Springer, Berlin, 1986).

    Google Scholar 

  179. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, “Ferromagnetism in one-dimensional monatomic metal chains,” Nature 416 (6878), 301–304 (2002).

    Article  Google Scholar 

  180. P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, and C. Carbone, “Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films,” Phys. Rev. Lett. 88, 047202 (2002).

    Article  Google Scholar 

  181. L. Néel, “Influence des fluctuations thermiques sur l’aimantation de grains ferromagnetique tres fins,” C. R. Acad. Sci. (Serie B, Paris), 228, 664–666 (1949).

    Google Scholar 

  182. F. E. Hoare and J. C. Walling, “An absolute measurement of the susceptibility of tantalum and other metals,” Proc. Phys. Soc. B 64, 337–341 (1951).

    Article  Google Scholar 

  183. J. P. Bucher, D. C. Douglas, and L. A. Bloomfield, “Magnetic properties of free cobalt clusters,” Phys. Rev. Lett. 66, 3052–3055 (1991).

    Article  Google Scholar 

  184. I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. de Heer, “Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature,” Phys.Rev. Lett. 71, 4067–4070 (1993).

    Article  Google Scholar 

  185. A. J. Cox, J. G. Louderback, and L. A. Bloomfield, “Experimental observation of magnetism in rhodium clusters,” Phys.Rev. Lett, 923–926 (1993).

    Google Scholar 

  186. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, “Magnetism in 4d-transition metal clusters,” Phys. Rev. B: Condens. Matter 49, 12295–12298 (1994).

    Article  Google Scholar 

  187. C. M. Chang and M. Y. Chou, “Alternative low-symmetry structure for 13-atom metal clusters,” Phys. Rev. Lett. 93, 133401 (2004).

    Article  Google Scholar 

  188. X. Xu, S. Yin, R. Moro, A. Liang, J. Bowlan, and W. A. de Heer, “Metastability of free cobalt and iron clusters: A possible precursor to bulk ferromagnetism,” Phys. Rev. Lett. 107, 057203 (2011).

    Article  Google Scholar 

  189. A. Perez, P. Mélinon, V. Dupuis, B. Prével, L. Bardotti, J. Tuaillon-Combes, B. Masenelli, M. Treilleux, M. Pellarin, J. Lermé, E. Cottancin, M. Broyer, M. Jamet, M. Négrier, F. Tournus, and M. Gaudry, “Nanostructured materials from clusters: Synthesis and properties,” Mater. Trans 42, 1460–1470 (2001).

    Article  Google Scholar 

  190. V. M. T. S. Barthem, A. Rogalev, F. Wilhelm, M. M. Sant’Anna, S. L. A. Mello, Y. Zhang, P. BayleGuillemaud, and D. Givord, “Spin fluctuations of paramagnetic Rh clusters revealed by X-ray magnetic circular dichroism,” Phys. Rev. Lett. 109, 197204 (2012).

    Article  Google Scholar 

  191. K. K. Murata and S. Doniach, “Theory of magnetic fluctuations in itinerant ferromagnets,” Phys. Rev. Lett. 29, 285–288 (1972).

    Article  Google Scholar 

  192. T. Moriya and A. Kawabata, “Effect of spin fluctuations on itinerant electron ferromagnetism,” J. Phys. Soc. Jpn. 34, 639–651 (1973).

    Article  Google Scholar 

  193. H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada, “Anomalous magnetic polarization effect of Pd and Au nano-particles,” Phys. Lett. A 263, 406–410 (1999).

    Article  Google Scholar 

  194. I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, “Magnetism induced by the organization of selfassembled monolayers,” J. Chem. Phys 118, 10372–10375 (2003).

    Article  Google Scholar 

  195. P. Zhang and T. K. Sham, “X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects,” Phys. Rev. Lett. 90, 245502 (2003).

    Article  Google Scholar 

  196. P. Crespo, R. Litrán, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sánchez-López, M. A. Garcia, A. Hernando, S. Penadés, and A. Fernández, “Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles,” Phys. Rev. Lett. 93, 087204 (2004).

    Article  Google Scholar 

  197. J. S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J. D. Cashion, N. Kawamura, H. Ohsawa, I. Gil de Muro, K. Suzuki, F. Plazaola, T. Rojo, “Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: Localization of the magnetism by element selective techniques,” Nano Lett. 8, 661–667 (2008).

    Article  Google Scholar 

  198. R. Gréget, G. L. Nealon, B. Vileno, Ph. Turek, Ch. Mény, F. Ott, A. Derory, E. Voirin, E. Rivière, A. Rogalev, F. Wilhelm, L. Joly, W. Knafo, G. Ballon, E. Terazzi, J.-P. Kappler, B. Donnio, and J.- L. Gallani, “Magnetic properties of gold nanoparticles: A room-temperature quantum effect,” ChemPhysChem 13, 3092–3097 (2012).

    Article  Google Scholar 

  199. E. Guerrero, M. A. Munoz-Marquez, M. A. García, P. Crespo, E. Fernandez-Pinel, A. Hernando, and A. Fernandez, “Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles,” Nanotecnology 19, 175701 (2008).

    Article  Google Scholar 

  200. Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, “Direct observation of ferromagnetic spin polarization in gold nanoparticles,” Phys. Rev. Lett. 93, 116801 (2004).

    Article  Google Scholar 

  201. J. Bartolomé, F. Bartolomé, L. M. García, A. I. Figueroa, A. Repollés, M. J. Martínez-Pérez, F. Luis, C. Magén, S. Selenska-Pobell, F. Pobell, T. Reitz, R. Schönemann, T. Herrmannsdörfer, M. Merroun, A. Geissler, F. Wilhelm, and A. Rogalev, “Strong paramagnetism of gold nanoparticles deposited on a Sulfolobus acidocaldarius S layer,” Phys. Rev. Lett. 109, 247203 (2012).

    Article  Google Scholar 

  202. S. Selenska-Pobell, T. Reitz, R. Schönemann, T. Herrmansdörfer, M. L. Merroun, A. Geißler, J. Bartolomé, F. Bartolomé, L. M. García, F. Wilhelm, A. Rogalev, “Magnetic Au nanoparticles on archaeal S-Layer ghosts as templates,” Nanomater. Nanotech. 1, 8–16 (2011).

    Google Scholar 

  203. F. Wilhelm, P. Poulopoulos, V. Kapaklis, J.-P. Kappler, N. Jaouen, A. Rogalev, A. N. Yaresko, C. Politis, “Au and Fe magnetic moments in disordered Au–Fe alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 224414 (2008).

    Article  Google Scholar 

  204. K. Dumesnil, M. Dutheil, C. Dufour, and Ph. Mangin, “Spring magnet behavior in DyFe2/YFe2 Laves phases superlattices,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 1136–1140 (2000).

    Article  Google Scholar 

  205. H. Adachi and H. Ino, “A ferromagnet having no net magnetic moment,” Nature 401(6749), 148–150 (1999).

    Article  Google Scholar 

  206. A. Avisou, C. Dufour, K. Dumesnil, and D. Pierre, “Epitaxial growth of (1 1 0) and (1 1 1) SmAl2 films: Deposition temperature dependence of the growth direction,” J. Crystal Growth 297, 239–246 (2006).

    Article  Google Scholar 

  207. A. Avisou, C. Dufour, K. Dumesnil, A. Rogalev, F. Wilhelm, and E. Snoeck, “Long range spin ferromagnetic order with zero magnetization in (111) Sm1 - x GdxAl2 films,” J. Phys.: Condens. Matter 20, 265001 (2008).

    Google Scholar 

  208. M. Ungureanu, K. Dumesnil, C. Dufour, N. Gonzalez, F. Wilhelm, A. Smekhova, and A. Rogalev, “Using a zero-magnetization ferromagnet as the pinning layer in exchange-bias systems,” Phys. Rev. B: Condens. Matter Mater. Phys. 82, 174421 (2010).

    Article  Google Scholar 

  209. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, “Room-Temperature Magnetoresistance in An Oxide Material with An Ordered Double-Perovskite Structure,” Nature 395 (6703), 677–680 (1998).

    Article  Google Scholar 

  210. B. García-Landa, C. Ritter, M. R. Ibarra, J. Blasco, P. A. Algarabel, R. Mahendiran, and J. García, “Magnetic and magnetotransport properties of the ordered perovskite Sr2FeMoO6,” Solid State Commun. 110, 435–438 (1999).

    Article  Google Scholar 

  211. S. Ray, A. Kumar, D. D. Sarma, R. Cimino, S. Turchini, S. Zennaro, N. Zema, “Electronic and magnetic structures of Sr2FeMoO6,” Phys. Rev. Lett. 87, 097204 (2001).

    Article  Google Scholar 

  212. M. Besse, V. Cros, A. Barthélémy, H. Jaffrès, J. Vogel, F. Petroff, A. Mirone, A. Tagliaferri, P. Bencok, P. Decorse, P. Berthet, Z. Szotek, W. M. Temmerman, S. S. Dhesi, N. B. Brookes, A. Rogalev, and A. Fert, “Experimental evidence of the ferrimagnetic ground state of Sr2FeMoO6 probed by X-ray magnetic circular dichroism,” Europhys. Lett. 60, 608–614 (2002).

    Article  Google Scholar 

  213. L. Alff, “Ferrimagnetic double perovskites as spintronic materials,” in Electron Correlation in New Materials and Nanosystems, Ed. by K. Scharnberg and S. Kruchinin, NATO Science Series II, 241, 393–400 (2007).

    Chapter  Google Scholar 

  214. D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, “Electronic structure of Sr2FeMoO6,” Phys. Rev. Lett. 85, 2549–2552 (2000).

    Article  Google Scholar 

  215. Y. Krockenberger, K. Mogare, M. Reehuis, M. Tovar, M. Jansen, G. Vaitheeswaran, V. Kanchana, F. Bultmark, A. Delin, F. Wilhelm, A. Rogalev, A. Winkler, and L. Alff, “Sr2CrOsO6: End point of a spin-polarized metal-insulator transition by 5d band filling,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 020404 (2007).

    Article  Google Scholar 

  216. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  217. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B: Condens. Matter 39, 4828–4830 (1989).

    Article  Google Scholar 

  218. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  219. M. Angelakeris, P. Poulopoulos, N. Vouroutzis, M. Nyvlt, V. Prosser, S. Visnovsky, R. Krishnan, and N. K. Flevaris, “Structural and spectroscopic magneto-optic studies of Pt–Ni multilayers,” J. Appl. Phys. 82, 5640–5645 (1997).

    Article  Google Scholar 

  220. O. K. Andersen, O. Jepsen, and M. Sob, “Linearized band structure methods,” Lecture Notes in Physics, 283, 1–57 (1987).

    Article  Google Scholar 

  221. F. Wilhelm, P. Poulopoulos, H. Wende, A. Scherz, K. Baberschke, M. Angelakeris, N. K. Flevaris, A. Rogalev, “Systematics of the induced magnetic moments in 5d layers and the violation of the third Hund’s rule,” Phys. Rev. Lett. 87, 207202 (2001).

    Article  Google Scholar 

  222. E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, “Complementary polarized neutron and resonant X-ray magnetic reflectometry measurements in Fe/Gd heterostructures: Case of inhomogeneous intralayer magnetic structure,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 134438 (2009).

    Article  Google Scholar 

  223. N. Jaouen, G. van der Laan, T. K. Johal, F. Wilhelm, A. Rogalev, S. Mylonas, and L. Ortega, “Oscillatory behavior of 5d magnetic moments in Fe/W multilayers,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 094417 (2004).

    Article  Google Scholar 

  224. N. Jaouen, F. Wilhelm, A. Rogalev, J. Goulon, J. M. Tonnerre, “An UHV apparatus for X-ray resonant magnetic reflectivity in the hard X-ray range,” AIP Conf. Proc. 705, 1134–1137 (2004).

    Article  Google Scholar 

  225. N. Jaouen, J. M. Tonnerre, D. Raoux, E. Bontempi, L. Ortega, M. Müenzenberg, W. Felsch, A. Rogalev, H. A. Durr, E. Dudzik, G. van der Laan, H. Maruyama, and M. Suzuki, “Ce 5d magnetic profile in Fe/Ce multilayers for the a and γ-like Ce phases by X-ray resonant magnetic scattering,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 134420 (2002).

    Article  Google Scholar 

  226. L. Seve, N. Jaouen, J. M. Tonnerre, D. Raoux, F. Bartolomé, M. Arend, W. Felsch, A. Rogalev, J. Goulon, C. Gautier, and J. F. Bérar, “Profile of the induced 5d magnetic moments in Ce/Fe and La/Fe multilayers probed by X-ray magnetic-resonant scattering,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 9662–9674 (1999).

    Article  Google Scholar 

  227. G. Woltersdorf, O. Mosendz, B. Heinrich, and C. H. Back, “Magnetization dynamics due to pure spin currents in magnetic double layers,” Phys. Rev. Lett. 99, 246603 (2007).

    Article  Google Scholar 

  228. A. Ghosh, J. F. Sierra, S. Auffret, U. Ebels, W. E. Bailey, “Dependence of nonlocal Gilbert damping on the ferromagnetic layer type in ferromagnet/Cu/Pt heterostructures,” Appl. Phys. Lett. 98, 052508 (2011).

    Article  Google Scholar 

  229. W. E. Bailey, A. Ghosh, S. Auffret S., E. Gautier, U. Ebels, F. Wilhelm, A. Rogalev, “Pd magnetism induced by indirect interlayer exchange coupling,” Phys. Rev. B: Condens. Matter Mater. Phys. 86, 144403 (2012).

    Article  Google Scholar 

  230. Z. Qiu, J. Pearson, and S. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B: Condens. Matter 46, 8659–8662 (1992).

    Article  Google Scholar 

  231. A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, “Finiteelement theory of transport in ferromagnet-normal metal systems,” Phys. Rev. Lett. 84, 2481–2484 (2000).

    Article  Google Scholar 

  232. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater., 9, 894–897 (2010).

    Article  Google Scholar 

  233. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator,” Nature 464 (7286), 262–266 (2010).

    Article  Google Scholar 

  234. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, “Enhanced Gilbert damping in thin ferromagnetic films,” Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  235. S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T. Y. Chen, J. Q. Xiao, and C. L. Chien, “Transport magnetic proximity effects in platinum,” Phys. Rev. Lett. 109, 107204 (2012).

    Article  Google Scholar 

  236. S. Geprägs, S. Meyer, S. Altmannshofer, M. Opel, F. Wilhelm, A. Rogalev, R. Gross, S. T. B. Goennenwein, “Investigation of induced Pt magnetic polarization in Pt/Y3Fe5O12 bilayers,” Appl. Phys. Lett. 101, 262407 (2012).

    Article  Google Scholar 

  237. Y. M. Lu, Y. Choi, C. M. Ortega, X. M. Cheng, J. W. Cai, S. Y. Huang, L. Sun, C. L. Chien, “Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics,” Phys. Rev. Lett. 110, 147207 (2013).

    Article  Google Scholar 

  238. S. Geprägs, S. T. B. Goennenwein, M. Schneider, F. Wilhelm, K. Ollefs, A. Rogalev, M. Opel, and R. Gross, “Comment on "Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics”, arXiv: 1307.4869.2013.

    Google Scholar 

  239. H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh, “Spin Hall magnetoresistance induced by a nonequilibrium proximity effect,” Phys. Rev. Lett. 110, 206601 (2013).

    Article  Google Scholar 

  240. G. Kioseoglou, A. T. Hanbicki, J. M. Sullivan, M. James, O. M. J. Erve, C. H. Li, S. C. Erwin, R. Mallory, M. Yasar, A. Petrou, and B. T. Jonker, “Electrical spin injection from an n-type ferromagnetic semiconductor into a III–V device heterostructure,” Nat. Mater. 3, 799–803 (2004).

    Article  Google Scholar 

  241. I. Zutic and H. Dery, “Spintronics: Taming Spin Currents,” Nat. Mater. 10, 647–648 (2011).

    Article  Google Scholar 

  242. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294 (5546), 1488–1495 (2001).

    Article  Google Scholar 

  243. B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck, “Ferromagnetic interaction in EuO,” Phys. Rev. Lett. 7, 160–161 (1961).

    Article  Google Scholar 

  244. I. Tsubokawa, “On the magnetic properties of a CrBr3 single crystal,” J. Phys. Soc. Jpn. 15, 1664–1668 (1960).

    Article  Google Scholar 

  245. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287 (5455), 1019–1022 (2000).

    Article  Google Scholar 

  246. T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, and S. A. Chambers, “Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films,” New J. Phys 10, 055010 (2008).

    Article  Google Scholar 

  247. E. Sarigiannidou, F. Wilhelm, E. Monroy, R. M. Galera, E. Bellet-Amalric, A. Rogalev, J. Cibert, J. Goulon, and H. Mariette, “Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 041306 (2006).

    Article  Google Scholar 

  248. M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, “Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As,” Nat. Phys. 6, 22–25 (2010).

    Article  Google Scholar 

  249. P. Wadley, A. A. Freeman, K. W. Edmonds, G. van der Laan, J. S. Chauhan, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, F. Wilhelm, A. G. Smekhova, and A. Rogalev, “Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K-edge X-ray magnetic circular dichroism,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 235208 (2010).

    Article  Google Scholar 

  250. M. Opel, S. T. B. Goennenwein, M. Althammer, K.-W. Nielsen, E.-M. Karrer-Muller, S. Bauer, K. Senn, C. Schwark, C. Weier, G. Güntherodt, B. Beschoten, and R. Gross, “Zinc oxide: From dilute magnetic doping to spin transport,” Phys. Status Solidi 251, 1700–1709.

  251. A. Ney, M. Opel, T. C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Nielsen, S. T. B. Goennenwein, M. H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S. M. Heald, J. C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, and S. A. Chambers, “Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: The case of Co: ZnO,” New J. Phys. 12, 013020 (2010).

    Article  Google Scholar 

  252. K. Rode, R. Mattana, A. Anane, V. Cros, E. Jacquet, J.-P. Contour, F. Petroff, A. Fert, M. A. Arrio, Ph. Sainctavit, P. Bencok, F. Wilhelm, N. B. Brookes, and A. Rogalev, “Magnetism of (Zn,Co)O thin films probed by X-ray absorption spectroscopies,” Appl. Phys. Lett. 92, 012509 (2008).

    Article  Google Scholar 

  253. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, “Absence of intrinsic ferromagnetic interactions of isolated and paired Co dopant atoms in Zn1 - x CoxO with high structural perfection,” Phys. Rev. Lett. 100, 157201 (2008).

    Article  Google Scholar 

  254. Y. Joly, “X-ray absorption near-edge structure calculations beyond the muffin-tin approximation,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 125120 (2001).

    Article  Google Scholar 

  255. A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Müller, and J. J. Grob, “Paramagnetism of the Co sublattice in ferromagnetic Zn1–x CoxO films,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 125201 (2007).

    Article  Google Scholar 

  256. R. E. Behringer, “Number of single, double, and triple clusters in a system containing two types of atoms,” J. Chem. Phys. 29, 537–539 (1958).

    Article  Google Scholar 

  257. A. Ney, V. Ney, F. Wilhelm, A. Rogalev, and K. Usadel, “Quantification of the magnetic exchange via element-selective high-field magnetometry: Co-doped ZnO epitaxial films,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 245202 (2012).

    Article  Google Scholar 

  258. P. Koindl, “Optical absorption of Co2+ in ZnO,” Phys. Rev. B: Solid. State 15, 2493–2499 (1977).

    Article  Google Scholar 

  259. A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, “Anisotropic paramagnetism of Co-doped ZnO epitaxial films,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 054420 (2010).

    Article  Google Scholar 

  260. P. Fumagalli, A. Schirmeisen, and R. J. Gambino, “Exchange induced enhancement of Tc in Co1–x EuSx macroscopic ferrimagnets,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 14294–14298 (1998).

    Article  Google Scholar 

  261. S. D. Pappas, P. Poulopoulos, B. Lewitz, A. Straub, A. Goschew, V. Kapaklis, F. Wilhelm, A. Rogalev, and P. Fumagalli, “Direct evidence for significant spinpolarization of EuS in Co/EuS multilayers at room temperature,” Sci. Rep. 3, 1333 (2013).

    Article  Google Scholar 

  262. B. Lewitz, A. Straub, V. Kapaklis, P. Poulopoulos, A. Delimitis, S. D. Pappas, and P. Fumagalli, “Proximity effects and Curie temperature enhancement in Co/EuS and Fe/EuS multilayers,” SPIN 2 (4), 1250016 (2012).

    Article  Google Scholar 

  263. P. J. Jensen, K. H. Bennemann, P. Poulopoulos, M. Farle, F. Wilhelm, K. Baberschke, “Enhanced Induced magnetization in coupled magnetic trilayers in the presence of spin fluctuations,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, R14994–R14997 (1999).

    Article  Google Scholar 

  264. P. Poulopoulos, A. Goschew, V. Kapaklis, M. Wolff, A. Delimitis, F. Wilhelm, A. Rogalev, S. D. Pappas, A. Straub, P. Fumagalli, “Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers,” Appl. Phys. Lett. 104, 112411 (2014).

    Article  Google Scholar 

  265. G. van der Laan, “Applications of soft X-ray magnetic dichroism,” J. Phys.: Conf. Series 430, 012127 (2013).

    Google Scholar 

  266. P. Fischer, D. H. Kim, W. Chao, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy of nanomagnetism,” Materials Today 9, 26–33 (2006).

    Article  Google Scholar 

  267. S. Eisebitt, J. Luning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectroholography,” Nature 432, 885–888 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rogalev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalev, A., Wilhelm, F. Magnetic circular dichroism in the hard X-ray range. Phys. Metals Metallogr. 116, 1285–1336 (2015). https://doi.org/10.1134/S0031918X15130013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15130013

Keywords

Navigation