Skip to main content
Log in

Effect of thermocycling on the temperatures of phase transformations, structure, and properties of the equiatomic alloy Ti50.0Ni50.0

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This article is devoted to studying the influence of thermocycling in the range of temperatures of the thermoelastic martensitic transformation B2–B19' on the microstructure, the temperatures of the martensitic transformations, and the mechanical properties of the equiatomic alloy Ti50Ni50 in the coarse-grained (CG) and ultrafine-grained (UFG) states, the latter obtained by equal-channel angular pressing (ECAP). One hundred cycles of thermocycling and the related increase in the dislocation density in the CG alloy led to a decrease in the temperatures of martensitic transformations. In the UFG alloy, the temperatures of the forward transformation (M s, M f) decrease by 2–3 K, and the temperatures of the reverse transformation (A s, A f) increase by 6 K. The ultimate strength remains almost unaltered upon the thermocycling, but the yield stress increases substantially from 430 to 550 MPa and from 935 to 1120 MPa for the CG and UFG states, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman, Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990).

    Google Scholar 

  2. S. Miyazaki, Y. Igo, and K. Otsuka, “Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys,” Acta Metall. 34, 2045–2051 (1986).

    Article  Google Scholar 

  3. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, “Effect of cycling deformation on the pseudoelasticity characteristics of Ti–Al alloys,” Metall. Trans. A 17, 115–120 (1986).

    Article  Google Scholar 

  4. I. I. Sasovskaya and V. G. Pushin, “Optical properties and structure of TiNi and TiNiFe alloys upon the temperatureand concentration-dependent B2–R transformation,” Fiz. Met. Metalloved. 64, 896–904 (1987).

    Google Scholar 

  5. Y. Liu and P. G. McCormick, “Factors influencing the development of two-way shape memory in NiTi,” Acta Metall. Mater. 38, 1321–1326 (1990).

    Article  Google Scholar 

  6. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  7. R. Stalmans, J. Van Humbeeck, and L. Delaey, “The two way memory effect in copper-based shape memory alloys—Thermodynamics and mechanisms,” Acta Metall. Mater. 40, 2921–2931 (1992).

    Article  Google Scholar 

  8. P. G. McCormick and Y. Liu, “Thermodynamic analysis of the martensitic transformation in NiTi: II. Effect of transformation cycling,” Acta Metall. Mater. 42, 2407–2413 (1994).

    Article  Google Scholar 

  9. L. Jordan, M. Masse, J. Y. Collier, and G. Bouquet, “Effects of thermal and thermomechanical cycling on the phase transformations in NiTi and NiTiCo shapememory alloys,” J. Alloys Compd. 211–212, 204–207 (1994).

    Article  Google Scholar 

  10. B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, and T. Ishihara, “Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys,” Mater. Sci. Eng., A 203, 187–196 (1995).

    Article  Google Scholar 

  11. Y. Liu and J. Van Humbeeck, “On the damping behavior of NiTi shape memory alloy,” J. Phys. IV 07, C5-519–C5-524 (1997).

  12. V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties and application,” Phys. Met. Metallogr. 90, Suppl. 1, S68–S95 (2000).

    Google Scholar 

  13. Y. Liu, D. Favier, and H. Yang, “Effect of ferroelastic cycling via martensitiic reorientation on the transformation behavior of nickel-titanium,” Mater. Trans. JIM 43, 792–797 (2002).

    Article  Google Scholar 

  14. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their effect on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, Suppl. 1, S3–S55 (2004).

    Google Scholar 

  15. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mater. 27, 77–88 (2002).

    Article  Google Scholar 

  16. R. Z. Valiev, V. G. Pushin, D. V. Gunderov, and A. G. Popov, “The use of severe deformations for preparing bulk nanocrystalline materials from amorphous alloys,” Dokl. Phys. 49, 519–521 (2004).

    Article  Google Scholar 

  17. R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).

    Article  Google Scholar 

  18. D. V. Gunderov, N. N. Kuranova, A. V. Luk’yanov, A. N. Uksusnikov, E. A. Prokof’ev, L. I. Yurchenko, R. Z. Valiev, and V. G. Pushin, “Application of severe plastic deformation by torsion to form amorphous and nanocrystalline states in large-size TiNi alloy sample,” Phys. Met. Metallogr. 108, 131–138 (2009).

    Article  Google Scholar 

  19. V. G. Pushin, N. I. Kourov, N. N. Kuranova, A. V. Pushin, and A. N. Uksusnikov, “Structure and phase transformations in TiNiFe ternary alloys subjected to plastic deformation by high-pressure torsion and subsequent heat treatment,” Phys. Met. Metallogr. 115, 365–379 (2014).

    Article  Google Scholar 

  20. S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide-based alloys in medicine,” Phys. Met. Metallogr. 97, Supp. 1, S56–S96 (2004).

    Google Scholar 

  21. A. R. Pelton, V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson, “Fatigue and durability of nitinol stents,” J. Mech. Behav. Biomed. Mater., No. 1, 153–164 (2008).

    Article  Google Scholar 

  22. Y. Liu and P. G. McCormick, “Thermodynamic analysis of the martensitic transformation in NiTi. I. Effect of heat treatment on transformation behavior,” Acta Metall. Mater. 42, 2401–2406 (1994).

    Article  Google Scholar 

  23. A. Pelton, “Nitinol fatigue: A review of microstructures and mechanisms,” J. Mater. Eng. Perform. 20, 613–617 (2011).

    Article  Google Scholar 

  24. A. R. Pelton, G. H. Huang, P. Moine, and R. Sinclair, “Effects of thermal cycling on microstructure and properties in Nitinol,” Mater. Sci. Eng., A 532, 130–138 (2012).

    Article  Google Scholar 

  25. G. B. Rao, J. Q. Wang, E. H. Han, and W. Ke, “Study of residual stress accumulation in TiNi shape memory alloy during fatigue using EBSD technique,” Mater. Lett. 60, 779–782 (2006).

    Article  Google Scholar 

  26. J. Hurley, A. M. Ortega, J. Lechniak, K. Gall, and H. J. Maier, “Structural evolution during the cycling of NiTi shape memory alloys,”. Z. Metallkd. 94, 547–552 (2003).

    Article  Google Scholar 

  27. D. M. Norfleet, P. M. Sarosi, S. Manchiraju, M. F. X. Wagner, M. D. Uchic, P. M. Anderson, and M. J. Mills, “Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals,” Acta Mater. 57, 3549–3561 (2009).

    Article  Google Scholar 

  28. J. Ye, R. K. Mishra, A. R. Pelton, and A. M. Minor, “Direct observation of the NiTi martensitic phase transformation in nanoscale volumes,” Acta Mater. 58, 490–498 (2010).

    Article  Google Scholar 

  29. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, and G. Eggeler, “On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys,” Acta Mater. 58, 1850–1860 (2010).

    Article  Google Scholar 

  30. B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp, and C.-J. Yu (Mike), “Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy,” Acta Mater. 56, 3630–3646 (2008).

    Article  Google Scholar 

  31. R. Z. Valiev and I. V. Alexandrov, Bulk Nanostructured Metallic Materials: Fabrication, Structure, and Properties (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  32. V. Ya. Erofeev, L. A. Monasevich, V. A. Pavskaya, and Yu. I. Paskal’, “Phase-transformation-induced hardening upon the titanium nickelide martensitic transformation,” Phys. Met. Metallogr. 53, 963–965 (1982).

    Google Scholar 

  33. A. A. Churakova and D. V. Gunderov, “The mechanical properties of a TiNi alloy obtained by severe plastic deformation and subsequent thermal cyclic treatment,” Vektor Nauki Tol’yatti Gos. Univ., No. 3 (25), 285–291 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Churakova.

Additional information

Original Russian Text © A.A. Churakova, D.V. Gunderov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 1, pp. 105–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churakova, A.A., Gunderov, D.V. Effect of thermocycling on the temperatures of phase transformations, structure, and properties of the equiatomic alloy Ti50.0Ni50.0 . Phys. Metals Metallogr. 117, 99–106 (2016). https://doi.org/10.1134/S0031918X15110046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15110046

Keywords

Navigation