Skip to main content
Log in

Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

It has been shown using X-ray diffraction, scanning electron microscopy, and chemical analysis that, upon ball milling of α-titanium in liquid organic media (toluene and n-heptane), a nanocrystalline fcc phase is formed that is a metastable carbohydride Ti(C,H) deficient in hydrogen and carbon compared to stable carbohydrides. The dimensions of powder particles after milling in toluene and n-heptane differ substantially (are 5–10 and 20–30 μm, respectively. It has been shown that the kinetics of the formation of Ti(C,H) is independent of the milling medium. The atomic ratios H/C in the products of mechanosynthesis agree well with those corresponding to the employed organic media, i.e., H/C = 1.1 for toluene and 2.3 for n-heptane. A solid-liquid mechanism of mechanosynthesis is suggested, which includes repeated processes of particle fracturing with the formation of fresh surfaces, adsorption of liquid hydrocarbons on these surfaces, and subsequent cold welding of the newly formed particles. It is assumed that the formation of the fcc phase in the process of milling is connected with the generation of stacking faults in α-Ti. Upon annealing at 550°C, the fcc phase decomposes with the formation of stable titanium carbide TiC (annealing in a vacuum) or stable titanium carbohydride and a β-Ti(H) solid solution (annealing in argon) with a partial reverse transformation Ti(C,H) → α-Ti in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  2. T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, Mechanochemical Synthesis in Metallic Systems (Parallel’, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  3. G. A. Dorofeev, V. I. Lad’yanov, A. N. Lubnin, F. Z. Gil’mutdinov, E. V. Kuz’minykh, and S. M. Ivanov, “Initial stage of mechanochemical synthesis in the Ti-C exothermic system,” Bull. Russ. Acad. Sci.: Phys. 74, 1427–1434 (2011).

    Article  Google Scholar 

  4. Z. H. Cheng, G. R. MacKay, D. A. Small, and R. A. Dunlap, “Phase development in titanium by mechanical alloying under hydrogen atmosphere,” J. Phys. D: Appl. Phys. 32, 1934–1937 (1999).

    Article  Google Scholar 

  5. E. P. Yelsukov, V. A. Barinov, and L. V. Ovetchkin, “Synthesis of disordered Fe3C alloy by mechanical alloying of iron powder with liquid hydrocarbon (toluene),” J. Mater. Sci. Lett. 11, 662–663 (1992).

    Article  Google Scholar 

  6. S. F. Lomayeva, E. P. Yelsukov, G. N. Konygin, G. A. Dorofeev, V. I. Povstugar, S. S. Mikhailova, and A. H. Kadikova, “Structure, phase composition and magnetic characteristic of the nanocrystalline iron powders obtained by mechanical milling in heptane,” Nanostruct. Mater. 12, 483–486 (1999).

    Article  Google Scholar 

  7. T. Suzuki and M. Nagumo, “Mechanochemical reaction of Ti-Al with hydrocarbon during mechanical alloying,” Scr. Metall. Mater. 27, 1413–1418 (1992).

    Article  Google Scholar 

  8. S. F. Lomaeva, A. N. Maratkanova, V. A. Volkov, O. M. Nemtsova, D. V. Surnin, and E. P. Elsukov, “Mechanosynthesis of Fe-TiC nanocomposites in presence of organic liquids,” Khim. Fiz. Mezoskop. 12, 120–126 (2010).

    Google Scholar 

  9. S. F. Lomaeva, I. V. Povstugar, V. A. Volkov, A. N. Maratkanova, E. P. Elsukov, “Mechanochemical synthesis of nanocomposites in Fe-Th-C system from different precursors,” Khim. Interesah Ustoich. Razvit. 17, 629–639 (2009).

    Google Scholar 

  10. T. S. Suzuki and M. Nagumo, “Metastable intermediate phase formation at reaction milling of titanium and n-heptane,” Scr. Metall. Mater. 32, 1215–1220 (1995).

    Article  Google Scholar 

  11. M. Nagumo, T. S. Suzuki, and K. Tsuchida, “Metastable states during reaction milling of hcp transition metals with hydrocarbon,” Mater. Sci. Forum 225227, 581–586 (1996).

    Article  Google Scholar 

  12. I. Manna, P. P. Chattopadhyay, P. Nandi, F. Banhart, and H.-J. Fecht, “Formation of face-centered-cubic titanium by mechanical attrition,” J. Appl. Phys. 93, 1520–1524 (2003).

    Article  Google Scholar 

  13. P. Chatterjee and S. P. S. Gupta, “An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium,” Philos. Mag. 81, 49–60 (2001).

    Article  Google Scholar 

  14. Z. P. Chen, Z. Wen, and Q. Jiang, “Phase stabilities of fcc Ti nanocrystals,” Solid State Commun. 132, 747–750 (2004).

    Article  Google Scholar 

  15. S. Xiong, W. Qi, B. Huang, M. Wang, Z. Li, and S. Liang, “Size-temperature phase diagram of titanium nanosolids,” J. Phys. Chem. C 116, 237–241 (2012).

    Article  Google Scholar 

  16. M. R. Seelam, G. Barkhordarian, and C. Suryanarayana, “Is there a hexagonal-close-packed (hcp) facecentered-cubic (fcc) allotropic transformation in mechanically milled Group IVB elements?” J. Mater. Res. 24, 3454–3461 (2009).

    Article  Google Scholar 

  17. H. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967; Mir, Moscow, 1971).

    Book  Google Scholar 

  18. L. V. Zueva and A. I. Gusev, “Effect of nonstoichiometry and ordering on the period of the basis structure of cubic titanium carbide,” Phys. Solid State 41, 1032–1038 (1999).

    Article  Google Scholar 

  19. C. S. Barret and T.B. Massalski, Structure of Metals (McGraw-Hill, New York, 1966; Metallurgiya, Moscow, 1984).

    Google Scholar 

  20. R. A. Young, Introduction to the Rietveld method (Oxford University Press, Oxford, 1993).

    Google Scholar 

  21. DifracPlus Topas: Topas 4.2 Technical Reference (Bruker AXS, Karlsruhe, 2009).

  22. D. Balzar, “Voigt-Function Model in Diffraction Line-Broadening Analysis,” in Microstructure Analysis from Diffraction, Ed. by R. L. Snyder, H. J. Bunge, and J. Fiala, International Union of Crystallography Monographs No. 10 (Oxford University Press, New York, 1999), pp. 94–126.

    Google Scholar 

  23. S. Pratapa and B. O’ Connor, “Development of MgO ceramic standards for X-ray and neutron line broadening assessments,” Adv. X-ray Analys. 45, 41–47 (2001).

    Google Scholar 

  24. A. I. Savvatimskii, “Melting point of graphite and liquid carbon.” Phys.-Usp. 46, 1295–1303 (2003).

    Article  Google Scholar 

  25. Z. Guo, A. P. Miodownik, N. Saunders, and J. Schille, “Influence of stacking-fault energy on high temperature creep of alpha titanium alloys,” Scr. Mater. 54, 2175–2178 (2006).

    Article  Google Scholar 

  26. X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, M. I. Baskes, Y. T. Zhu, F. Zhou, E. J. Lavernia, and H. F. Xu, “Formation mechanism of wide stacking faults in nanocrystalline Al,” Appl. Phys. Lett. 84, 3564–3566 (2004).

    Article  Google Scholar 

  27. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, “Generation of glide split-dislocation half-loops by grain boundaries in nanocrystalline Al,” Phys. Solid State 48, 1495–1505 (2006).

    Article  Google Scholar 

  28. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  29. I. G. Khidirov, S. Kh. Sultanova, B. B. Mirzaev, N. N. Mukhtarova, and V. V. Getmanskiy, “Phase transformations and neutron diffraction study of antiphase domains ordering in cubic titanium carbohydrides at the lower limit of homogeneity range,” Int. J. Altern. Energ. Ecolog., No. 11. 8–14 (2004).

    Google Scholar 

  30. I. G. Khidirov, B. B. Mirzaev, N. N. Mukhtarova, V. V. Getmanskjy, B. T. Serikbaev, Kh. M. Kholmedov, S. Yu. Zaginaichenko, D. V. Shchur, V. K. Pishchuk, L. V. Kuzmenko, V. V. Garbuz, S. V. Nuzhda, and O. V. Pishchuk, “Determination of Ti2C1 − x H2 − y solid solution homogeneity range by neutron diffraction method,” Int. J. Altern. Ener. Ecolog., No. 5, 49–55 (2007).

    Google Scholar 

  31. S. K. Dolukhanyan, “SHS-method of production of hydrogen accumulators,” Int. J. Altern. Ener. Ecolog., No. 11, 13–16 (2005).

    Google Scholar 

  32. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Oxford, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dorofeev.

Additional information

Original Russian Text © G.A. Dorofeev, A.N. Lubnin, V.I. Lad’yanov, V.V. Mukhgalin, B.E. Puskkarev, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 2, pp. 167–178.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeev, G.A., Lubnin, A.N., Lad’yanov, V.I. et al. Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons. Phys. Metals Metallogr. 115, 157–168 (2014). https://doi.org/10.1134/S0031918X14020057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14020057

Keywords

Navigation