Skip to main content
Log in

A first-principles investigation of the effect of relaxation on the alloy formation in the aluminum-3d-transition-metal system

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The aim of this investigation is to establish the effect of relaxation on the formation of ordered substitutional solid solutions in Al1 − x M x alloys (M = 3d metal; x = 1.6 at %). As the main parameters of the process of formation of the aluminum-based solution, thermodynamic quantities such as the energy of dissolution and the cohesive energy have been chosen; for choosing the most appropriate substitutional element, an analysis of the relaxation energy and deviations of empirical atomic radii of the impurity from the radius of the matrix-forming element has been suggested. It has been shown that there is a correlation between these thermodynamic quantities through the behavior of the density of electronic states and the Fermi energy. A regular relation has also been demonstrated to exist between the relaxation and stability of arising solid solutions, which supports the applicability of the analysis of relaxation energy depending on the atomic radius of the matrix-substituting element. The presence of anomalies in the behavior of magnetic properties of some aluminum alloys with transition metals has been shown and their explanation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Razumovskii, A. V. Ruban, V. I. Razumovskiy, A. V. Logunov, V. N. Larionov, O. G. Ospennikova, V. A. Poklad, and B. Johanson, “New Generation of Ni-Based Superalloys Designed on the Basis of First-Principles Calculations,” Mater. Sci. Eng., A 497, 18–24 (2008).

    Article  Google Scholar 

  2. L. Vitos, Computational Quantum Mechanics for Materials Engineers. The EMTO Methods and Applications (Springer Verlag, London, 2007).

    Google Scholar 

  3. A. V. Ruban and H. L. Skriver, “Screened Coulomb Interactions in Metallic Alloys. I. Universal Screening in the Atomic-Sphere Approximation,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 024201 (2002).

    Article  Google Scholar 

  4. A. V. Ruban, S. I. Simak, P. A., Korzhavyi, and H. L. Skriver, “Screened Coulomb Interactions in Metallic Alloys. II. Screening beyond the Single-Site and Atomic-Sphere Approximations,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 024202 (2002).

    Article  Google Scholar 

  5. T. Hoshino, M. Asato, R. Zeller, and P. H. Dederichas, “Full-Potential KKR Calculations for Vacancies in Al: Screening Effect and Many-Body Interactions,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 094118 (2004).

    Article  Google Scholar 

  6. E. Šimanek and S. Yoksan, “Anomalous Specific Heat and Nuclear Spin Relaxation in Al-Transition Metal Alloys,” Phys. Lett., A 70, 122–124 (1979).

    Article  Google Scholar 

  7. C. J. Smithells, Metals Reference Book (Butterworths, London, 1967; Metallurgiya, Moscow, 1980).

    Google Scholar 

  8. N. Papanikolau, R. Zeller, P. H. Dederichs, and N. Stefanou, “Lattice Distortion in Cu-Based Dilute Alloys: A First-Principles Study by the KKR Green-Function Method,” Phys. Rev. B: Condens. Matter 55, 4157–4167 (1997).

    Article  Google Scholar 

  9. R. Benedek, L. H. Yang, C. Woodward, and B. I. Min, “Formation Energy and Lattice Relaxation for Point Defects in Li and Al,” Phys. Rev. B: Condens. Matter 45, 2607 (1992).

    Article  CAS  Google Scholar 

  10. A. de Vita and M. J. Gillant, “The Ab Initio Calculation of Defect Energetics in Aluminium,” J. Phys.: Condens. Matter 3, 6225–6237 (1991).

    Article  Google Scholar 

  11. D. Guenzburger and D. E. Ellis, “Fe Impurity in Al: Magnetic or Nonmagnetic?” Phys. Rev. Lett. 67(27), 3832–3835 (1991).

    Article  CAS  Google Scholar 

  12. D. Guenzburger and D. E. Ellis, “Lattice-Distortion Effects on the Magnetism of Mn Impurities in Al and Cu,” Phys. Rev. B: Condens. Matter 49, 6004–6011 (1994).

    Article  CAS  Google Scholar 

  13. D. Bagayoko, L. Puiman, N. Brener, and J. Callaway, “3d Transition-Metal Impurities in Aluminum,” Phys. Rev. B: Condens. Matter 54(17), 12184–12193 (1996).

    Article  CAS  Google Scholar 

  14. T. Hoshino, M. Asato, S. Tanaka, F. Nakamura, and N. Fujima, “First-Principles Calculations for Stability of Atomic Structures of Al-Rich AlX (X = Sc-Zn) Alloys, Including AlMn Quasicrystal: II. Medium-Ranged Interactions of X Pairs in Al,” Intermetallics 14(8–9), 913–916 (2006).

    Article  CAS  Google Scholar 

  15. T. Hoshino, N. Fujima, M. Asato and R. Tamura “Medium-Ranged Interactions of Transition-Metal (3d and 4d) Impurity Pairs in Al and Atomic Structures of Al-Rich Al-Transition-Metal Alloys,” J. Alloys Compd., 434–435, 572–576 (2007).

    Article  Google Scholar 

  16. W. Kohn, “Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functionals,” Rev. Mod. Phys., 71, 1253–1266 (1999).

    Article  CAS  Google Scholar 

  17. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B, 136, 864–847 (1964).

    Article  Google Scholar 

  18. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. B. 140, 1133–1138 (1965).

    Article  Google Scholar 

  19. P. E. Blöchl, “Projector Augmented-Wave Method,” Phys. Rev. B: Condens. Matter 50, 17953–17979 (1994).

    Article  Google Scholar 

  20. G. Kress and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999).

    Article  Google Scholar 

  21. G. Kress and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B: Condens. Matter 47, 558–561 (1993).

    Article  Google Scholar 

  22. G. Kress and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B: Condens. Matter 49, 8522–8525 (1994).

    Article  Google Scholar 

  23. G. Kress and J. Furthmuller, “Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set,” Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  24. G. Kress and J. Furthmuller, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    Article  Google Scholar 

  25. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Phys. Rev. B: Condens. Matter 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  26. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Phys. Rev. B: Condens. Matter 48, 4978 (1993).

    Article  CAS  Google Scholar 

  27. J. P. Perdew and A. Zunger, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Phys. Rev. B: Condens. Matter 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  28. H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B: Solid State 13, 5188–5192 (1972).

    Article  Google Scholar 

  29. A. V. Ruban and H. L. Skriver, “Ab Initio Calculations of Partial Molar Properties in the Single-Site Approximation,” Phys. Rev. B: Condens. Matter 55, 8801–8807 (1997).

    Article  CAS  Google Scholar 

  30. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1975; Nauka, Moscow, 1978).

    Google Scholar 

  31. M. S. Brooks and B. Johansson, “Exchange Integral Matrices and Cohesive Energies of Transition Metal Atoms,” J. Phys. F: Met. Phys. 13, L197–L202 (1983).

    Article  CAS  Google Scholar 

  32. J. C. Slater, “Atomic Radii in Crystals,” J. Chem. Phys. 41, 3199–3205 (1964).

    Article  CAS  Google Scholar 

  33. Ya. S. Umanskii and Yu. A. Skakov, Fizika metallov (Metal Physics) (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  34. D. G. Pettifor, Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford, 1995).

    Google Scholar 

  35. V. M. Cherkashenko, S. Z. Nazarova, A. I. Gusev, and A. L. Ivanovskii, “Electron Structure, Chemical Bonding, and Properties of Binary M-{x} M′-{y} C-{z} Carbides in Crystalline and Molecular State Studied by X-ray Emission Electron Spectroscopy and Quantum Chemistry,” Zh. Strukt. Khim. 42, 1195–1221 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.Yu. Nikitin, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 5, pp. 451–462.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, N.Y. A first-principles investigation of the effect of relaxation on the alloy formation in the aluminum-3d-transition-metal system. Phys. Metals Metallogr. 113, 427–437 (2012). https://doi.org/10.1134/S0031918X12050043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12050043

Keywords

Navigation