Skip to main content
Log in

Structure and properties of aluminum alloy 1421 after equal-channel angular pressing and isothermal rolling

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Sheets from the aluminum alloy 1421 with an ultrafine-grained (UFG) structure and a weak crystallographic texture were prepared by the method of equal-channel angular pressing (ECAP) through a die with channels of a rectangular cross section and by subsequent isothermal rolling. Both operations were carried out at a temperature of 325°C. It is shown that severe plastic deformation (SPD) leads to the formation of a completely recrystallized uniform microstructure with an average grain size of 1.6 µm in the alloy. At room temperature the alloy 1421 demonstrates high static strength (σu = 545 MPa, σ0.2 = 370 MPa) in the absence of a significant anisotropy. At temperatures of hot deformation, the alloy showed ultrahigh elongations under superplasticity (SP) conditions. At a temperature of 450°C and initial deformation rate of 1.4 × 10−2 s−1 the maximum elongation at fracture was ∼2700%. At static annealing at a temperature of SP deformation, the UFG structure formed in the process of SPD remains stable. The SP deformation is accompanied by an insignificant grain growth and pore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, “Aluminum-Lithium Alloys,” in Structure and Properties (Naukova Dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  2. I. N. Fridlyander, L. B. Khokhlatova, N. I. Kolobnev, et al., “Development of Stable Aluminum Alloy 1424 for Applications in Welded Fuselages,” Metalloved. Term. Obrab. Met., No. 1, 1–9 (2002).

  3. F. Musin, R. Kaibyshev, Y. Motohashi, et al., “High Strain Rate Superplasticity in an Al-Li-Mg Alloy Subjected to Equal-Channel Angular Extrusion,” Mater. Trans. 43(10), 2370–2377 (2002).

    Article  CAS  Google Scholar 

  4. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, “Achieving High Strain Rate Superplasticity in an Al-Li-Mg-Sc Alloy through Equal-Channel Angular Extrusion,” Mater. Sci. Technol. 21(4), 408–418 (2005).

    Article  CAS  Google Scholar 

  5. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, “Continuous Dynamic Recrystallization in an Al-Li-Mg-Sc Alloy during Equal-Channel Angular Extrusion,” Mater. Sci. Eng., A 396, 341–351 (2005).

    Article  CAS  Google Scholar 

  6. V. M. Segal, “Engineering and Commercialization of Equal Channel Angular Extrusion,” Mater. Sci. Eng., A 386, 269–276 (2004).

    Google Scholar 

  7. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Prog. Mater. Sci. 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  8. M. Kamachi, M. Furukawa, Z. Horita, and T. G. Langdon, “Equal-Channel Angular Pressing Using Plate Samples,” Mater. Sci. Eng., A 361, 258–266 (2003).

    Article  CAS  Google Scholar 

  9. I. Nikulin, R. Kaibyshev, and T. Sakai, “Superplasticity in a 7055 Aluminum Alloy Processed by ECAE and Subsequent Isothermal Rolling,” Mater. Sci. Eng., A 407, 62–70 (2005).

    Article  CAS  Google Scholar 

  10. Z. Horita, M. Furukawa, M. Nemoto, and T. G. Langdon, “Development of Fine Grained Structures Using Severe Plastic Deformation,” Mater. Sci. Technol. 16, 1239–1245 (2000).

    Article  CAS  Google Scholar 

  11. F. J. Humphreys, P. B. Prangnell, J. R. Bowen, et al., “Developing Stable Fine-Grain Microstructures by Large Strain Deformation,” Philos. Trans. R. Soc. London A 357, 1663–1681 (1999).

    Article  CAS  Google Scholar 

  12. J. Pilling and N. Ridley, Superplasticity in Crystalline Solids (The Institute of Metals, London, 1989).

    Google Scholar 

  13. O. A. Kaibyshev, Superplasticity of Alloys, Intermetallics, and Ceramics (Springer, Berlin, 1992).

    Google Scholar 

  14. M. Furukawa, Z. Horita, M. Nemoto, et al., “Factors Influencing the Flow and Hardness of Materials with Ultrafine Grain Sizes,” Philos. Mag. 78(1), 203–215 (1998).

    CAS  Google Scholar 

  15. K. T. Park, H. J. Lee, C. S. Lee, et al., “Enhancement of High Strain Rate Superplastic Elongation of a Modified 5154 Al by Subsequent Rolling after Equal Channel Angular Pressing,” Scr. Mater. 51, 479–483 (2004).

    Article  CAS  Google Scholar 

  16. H. Akamatsu, T. Fujinami, Z. Horita, and T. G. Langdon, “Influence of Rolling on the Superplastic Behavior of an Al-Mg-Sc Alloy after ECAP,” Scr. Mater. 44, 759–764 (2001).

    Article  CAS  Google Scholar 

  17. K. T. Park, H. J. Lee, Ch. S. Lee, and D. H. Shin, “Effect of Post-Rolling after ECAP on Deformation Behavior of ECAPed Commercial Al-Mg Alloy at 723 K,” Mater. Sci. Eng., A 393, 118–124 (2005).

    Article  CAS  Google Scholar 

  18. R. Kaibyshev, F. Musin, E. Avtokratova, and Y. Motohashi, “Deformation Behavior of a Modified 5083 Aluminum Alloy,” Mater. Sci. Eng., A 392, 373–379 (2005).

    Article  CAS  Google Scholar 

  19. O. V. Mishin, D. Juul Jensen, and N. Hansen, “Microstructures and Boundary Populations in Materials Produced by Equal Channel Angular Extrusion,” Mater. Sci. Eng., A 342, 320–328 (2003).

    Article  Google Scholar 

  20. H. Jazaeri and F. J. Humphreys, “The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys: I. The Deformed State,” Acta Mater. 52, 3239–3250 (2004).

    Article  CAS  Google Scholar 

  21. H. Jazaeri and F. J. Humphreys, “The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys: II. Annealing Behaviour,” Acta Mater. 52, 3251–3262 (2004).

    Article  CAS  Google Scholar 

  22. M. Ferry, N. E. Hamilton, and F. J. Humphreys, “Continuous and Discontinuous Grain Coarsening in a Fine-Grained Particle-Containing Al-Sc Alloy,” Acta Mater. 53, 1079–1109 (2005).

    Google Scholar 

  23. V. I. Elagin, “The State an the Ways of Enhancement of Fracture Strength of High-Strength Aluminum Alloys,” Metalloved. Term. Obrab. Met., No. 9, 10–17 (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Mogucheva, R.O. Kaibyshev, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 106, No. 4, pp. 439–448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogucheva, A.A., Kaibyshev, R.O. Structure and properties of aluminum alloy 1421 after equal-channel angular pressing and isothermal rolling. Phys. Metals Metallogr. 106, 424–433 (2008). https://doi.org/10.1134/S0031918X0810013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X0810013X

PACS numbers

Navigation