Skip to main content
Log in

Nonlinear acoustic localized waves in solids

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In the framework of an extended Boussinesq equation, a new class of localized two-parameter states has been obtained and studied in detail. It has been shown that three principal parameters of the problem (elasticity moduli describing quadratic and cubic nonlinearities and dispersion, which vary over a wide range) determine the necessary conditions of their formation. At the plane of two parameters (“pedestal” of a localized state and its width), two regions where the conditions of formation of these distributions are satisfied have been constructed. The results obtained can be used for the interpretation of experimental data on the structure and dynamic properties of localized acoustic states, including solitons in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

  2. R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982; Mir, Moscow, 1988).

    Google Scholar 

  3. H.-Y. Hao and H. J. Maris, “Experiments with Acoustic Solitons in Crystalline Solids,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 064302 (2001).

  4. O. L. Muskens and J. I. Dijkhuis, “Inelastic Light Scattering by Trains of Ultrashort Acoustic Solitons in Sapphire,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 104301 (2004).

    Google Scholar 

  5. W. Singhsomroje and H. J. Marris, “Generating and Detecting Phonon Solitons in MgO Using Picosecond Ultrasonics,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 174303 (2004).

    Google Scholar 

  6. O. L. Muskens, A. V. Akimov, and J. I. Dijkhuis, “Coherent Interactions of Terahertz Strain Solitons and Electronic Two-Level Systems in Photoexcited Ruby,” Phys. Rev. Lett. 92, 035503 (2004).

    Google Scholar 

  7. K. Matsuda, N. Hatakenaka, H. Takayanagi, and T. Sakuma, “Tunable Single-Photon Source Using Korteweg-de Vries Solitons,” Appl. Phys. Lett. 81(15), 2698–2700 (2002).

    Article  CAS  Google Scholar 

  8. A. N. Bugai and S. V. Sazonov, “Soliton-like Propagation Modes of Picosecond Acoustic Pulses in a Paramagnetic Crystal,” Fiz. Tverd. Tela 49(1), 113–120 (2007) [Phys. Solid State 49 (1), 118–125 (2007)].

    Google Scholar 

  9. K. Brugger, “Thermodynamics Definition of Higher Order Elastic Coefficients,” Phys. Rev. 133(6A), A1611–A1612 (1964).

    Article  Google Scholar 

  10. I. A. Kunin, Theory of Elastic Media with Microstructure. Nonlocal Theory of Elasticity (Nauka, Moscow, 1975; Springer, New York, 1982).

    Google Scholar 

  11. V. I. Erofeev, Wave Processes in Solids with Microstructure (Mosk. Gos. Univ., Moscow, 1999; World Scientific, Singapore, 2003).

    Google Scholar 

  12. H.-Y. Hao and H. J. Maris, “Study of Phonon Dispersion in Silicon and Germanium at Long Wavelength Using Picosecond Ultrasonics,” Phys. Rev. Lett. 84(24), 5556–5558 (2000).

    Article  CAS  Google Scholar 

  13. A. V. Porubov and G. A. Maugin, “Propagation of Localized Longitudinal Strain Waves in a Plate in the Presence of Cubic Nonlinearity,” Phys. Rev. E: 74, 046617 (2006).

    Google Scholar 

  14. M. A. Borich, V. V. Smagin, and A. P. Tankeev, “Stationary States of Extended Nonlinear Schrödinger Equation with a Source,” Fiz. Met. Metalloved. 103(2), 122–135 (2007) [Phys. Met. Metallogr. 103 (2), 118–130 (2007)].

    CAS  Google Scholar 

  15. A. N. Bugai and S. V. Sazonov, “The Influence of Transverse Perturbations on the Propagation of Picosecond Acoustic Pulses in a Paramagnetic Crystal,” Fiz. Tverd. Tela 47(10), 1839–1845 (2005) [Phys. Solid State 47 (10), 1914–1921 (2005)].

    Google Scholar 

  16. N. Flytzanis, St. Pnevmaticos, and M. Remoissenet, “Kink, Breather and Asymmetric Envelope or Dark Solitons in Nonlinear Chains: I. Monatomic Chain,” J. Phys. C: Solid State Phys. 18, 4603–4629 (1985).

    Article  CAS  Google Scholar 

  17. St. Pnevmaticos, N. Flytzanis, and M. Remoissenet, “Soliton Dynamics of Nonlinear Diatomic Lattices,” Phys. Rev. B: 33(4), 2308–2321 (1986).

    Article  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1986; Nauka, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Smagin, M.A. Borich, A.P. Tankeev, A.S. Zhuravlev, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 106, No. 1, pp. 26–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagin, V.V., Borich, M.A., Tankeev, A.P. et al. Nonlinear acoustic localized waves in solids. Phys. Metals Metallogr. 106, 24–33 (2008). https://doi.org/10.1134/S0031918X08070041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08070041

PACS numbers

Navigation