Skip to main content
Log in

A Painful Question about Genomic Coding of the Body Plan

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

One of the goals of developmental genetics is to decipher the anatomy of organisms from their genome. The study of Drosophila homeotic mutants has shown that individual elements of the anatomy can have clear genomic correlates. However, we are still far from a complete solution for this problem. This review analyzes the reasons why, despite a very rapid accumulation of genomic data, progress is very slow in this area. These causes are primarily determined by a large number of neutral changes (changes that do not influence the morphology) in the regulatory regions of the genome, as well as by the localization of evolutionarily important changes in noncoding regions of the genome. Therefore, it is particularly important to carry out an experimental verification of the functional role of genetic differences using crossing or methods for obtaining transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Barrionuevo, F.J., Zurita, F., Burgos, M., and Jiménez, R., Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis, Dev. Biol., 2004, vol. 268, no. 1, pp. 39–52.

    Article  CAS  PubMed  Google Scholar 

  2. Bender, W., Akam, M., Karch, F., et al., Molecular genetics of the Bithorax complex in Drosophila melanogaster, Science, vol. 221, no. 4605, 1983, pp. 23–29.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Byrne, M., Martinez, P., and Morris, V., Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: The echinoderm HOX cluster revisited, Evol. Dev., 2016, vol. 18, no. 2, pp. 137–143.

    Article  PubMed  Google Scholar 

  4. Cotoras, D.D. and Allende, M.L., Was the tail bud the ancestral centre where the fin developmental program evolved in chordates? Contrib. Zool., 2015, vol. 84, no. 4, pp. 317–328.

    Article  Google Scholar 

  5. Dasmahapatra, K.K., Walters, J.R., Briscoe, A.D., et al., Butterfly genome reveals promiscuous exchange of mimicry adaptations among species, Nature, 2012, vol. 487, no. 7405, pp. 94–98.

    Article  CAS  PubMed Central  ADS  Google Scholar 

  6. David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, EvoDevo, 2014, vol. 5, no. 1, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Di-Poï, N., Montoya-Burgos, J.I., Miller, H., et al., Changes in Hox genes’ structure and function during the evolution of the squamate body plan, Nature, 2010, vol. 464, no. 7285, pp. 99–103.

    Article  PubMed  ADS  Google Scholar 

  8. Fröbius, A.C. and Funch, P., Rotiferan Hox genes give new insights into the evolution of metazoan body plans, Nat. Commun., 2017, vol. 8, no. 1, pp. 1–10.

    Article  ADS  Google Scholar 

  9. Gallant, J.R., Imhoff, V.E., Martin, A., et al., Ancient homology underlies adaptive mimetic diversity across butterflies, Nat. Commun., 2014, vol. 5, no. 1, p. 4817.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Harding, K., Wedeen, C., McGinnis, W., and Levine, M., Spatially regulated expression of homeotic genes in Drosophila, Science, 1985, vol. 229, no. 4719, pp. 1236–1242.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Kvon, E.Z., Kamneva, O.K., Melo, U.S., et al., Progressive loss of function in a limb enhancer during snake evolution, Cell, 2016, vol. 167, no. 3, pp. 633– 642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leal, F. and Cohn, M.J., Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers, Curr. Biol., 2016, vol. 26, no. 21, pp. 2966–2973.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis, E.B., A gene complex controlling segmentation in Drosophila, Nature, 1978, vol. 276, no. 5688, pp. 565–570.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Marchinko, K.B., Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback, Evolution, 2009, vol. 63, no. 1, pp. 127–138.

    Article  PubMed  Google Scholar 

  15. Martin, A. and Reed, R.D., Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems, Dev. Biol., 2014, vol. 395, no. 2, pp. 367–378.

    Article  CAS  PubMed  Google Scholar 

  16. Mazo-Vargas, A., Langmüller, A.M., Wilder, A., et al., Deep cis-regulatory homology of the butterfly wing pattern ground plan, Science, 2022, vol. 378, no. 6617, pp. 304–308.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Mikhailov, K.V., Slyusarev, G.S., Nikitin, M.A., et al., The genome of Intoshia linei affirms orthonectids as highly simplified spiralians, Curr. Biol., 2016, vol. 26, no. 13, pp. 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  18. Morris, D., Tinbergen, N., and Hoogland, R., The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox), Behaviour, 1956, vol. 10, no. 1, pp. 205–236.

    Article  Google Scholar 

  19. Negre, B. and Ruiz, A., HOM-C evolution in Drosophila: is there a need for Hox gene clustering? Trends Genet., 2007, vol. 23, no. 2, pp. 55–59.

    Article  CAS  PubMed  Google Scholar 

  20. Pascual-Anaya, J., D’Aniello, S., Kuratani, S., and Garcia-Fernàndez, J., Evolution of Hoxgene clusters in deuterostomes, BMC Dev. Biol., 2013, vol. 13, no. 1, p. 26.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Real, F.M., Haas, S.A., Franchini, P., et al., The mole genome reveals regulatory rearrangements associated with adaptive intersexuality, Science, 2020, vol. 370, no. 6513, pp. 208–214.

    Article  PubMed Central  ADS  Google Scholar 

  22. Reed, R.D., Papa, R., Martin, A., et al., Optix drives the repeated convergent evolution of butterfly wing pattern mimicry, Science, 2011, vol. 333, no. 6046, pp. 1137–1141.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Scott, M.P. and Weiner, A.J., Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila, Proc. Natl. Acad. Sci. U. S. A., 1984, vol. 81, no. 13, pp. 4115–4119.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Smith, F. W., Boothby, T. C., Giovannini, I., et al., The compact body plan of tardigrades evolved by the loss of a large body region, Curr. Biol., 2016, vol. 26, no. 2, pp. 224–229.

    Article  CAS  PubMed  Google Scholar 

  25. Sordino, P., Hoeven, F. van der, and Duboule, D., Hox gene expression in teleost fins and the origin of vertebrate digits, Nature, 1995, vol. 375, no. 6533, pp. 678–681.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Tian, L., Rahman, S.R., Ezray, B.D., et al., A homeotic shift late in development drives mimetic color variation in a bumble bee, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 24, pp. 11857–11865.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Van Belleghem, S. M., Rastas, P., Papanicolaou, A., et al., Complex modular architecture around a simple toolkit of wing pattern genes, Nat. Ecol. Evol., 2017, vol. 1, no. 3, pp. 1–12.

    Article  Google Scholar 

  28. Wucherpfennig, J.I., Howes, T.R., Au, J.N., et al., Evolution of stickleback spines through independent cis-regulatory changes at HOXDB, Nat. Ecol. Evol., 2022, vol. 6, no. 10, pp. 1537–1552.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zverkov, O.A., Mikhailov, K.V., Isaev, S.V., et al., Dicyemida and Orthonectida: Two stories of body plan simplification, Front. Genet., 2019, vol. 10, no. 443.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the participants of the colloquium “Morphogenesis in Individual and Historical Development” for the useful discussion of the subject of this review.

Funding

This study was supported by a grant from the Russian Science Foundation (to M.A. Nikitin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nikitin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by D. Zabolotny

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, M.A., Aleshin, V.V. A Painful Question about Genomic Coding of the Body Plan. Paleontol. J. 57, 1257–1262 (2023). https://doi.org/10.1134/S0031030123110096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030123110096

Keywords:

Navigation