Skip to main content
Log in

Origin of Echinodermata

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The common ancestor of Ambulacraria was a mobile bilaterally symmetrical organism. Its body was subdivided into a preoral (proboscis) region, a perioral (collar) region with ciliated tentacles, and a trunk region with a metameric coelom and metameric gill slits. Like in other Bilateria, the preoral and tentacular regions of Ambulacraria are free of Hox gene expression, which begins in the area of the first pair of gill slits in compliance with the colinearity. The axial complex is a synapomorphy of the Ambulacraria clade. A bilaterally symmetrical ancestor of Echinodermata lay on its dorsal side, so its anus was shifted to the ventral side as in present-day echinoderm larvae. This stage of evolution corresponds to the Early Paleozoic bilaterally symmetrical forms, such as Protocinctus, Ctenocystis, and Ctenoimbricata. The common ancestor of echinoderms had a symmetrical tentacular apparatus consisting of five ciliated tentacles on each side of a collar. At the next stage, the ancestors of echinoderms lay on the right side that resulted in the reduction of the tentacles on the right side and the right hydrocoel. This evolution stage includes various Early Paleozoic forms (Cothurnocystis, Dendrocystoides, Syringocrinus, Castericystis, Coleicarpus, Rhenocystis, etc.). The next stage is related to the sedentary lifestyle. During this stage, the mouth and tentacles occupied an apical position, the anus has shifted up, and thus an intestinal loop was formed. The five primary tentacles of the left side of the ancestor of Ambulacraria predestined the formation of pentaradial symmetry of echinoderms. The primary tentacles remained only in Holothuroidea. The secondary ciliary grooves were formed between the primary tentacles. These grooves were accompanied by hydrocoelic canals, which gave rise to the water-vascular (ambulacral) system. The present-day echinoderms are characterized by several metameric rings formed by the derivatives of the left somatocoel. They derive from the coelomic segments of the left side of the trunk of the ambulacrarian ancestor and, thus, the echinoderms retain coelomic metamerism. The attachment of the crinoid larvae by the preoral lobe reflects the ancient method of locomotion of deuterostomes using the proboscis, but, in reality, the Pelmatozoa stalk is homologous to the Pterobranchia stalk, i.e., the posterior end of the body, because the right somatocoel grows into it. During metamorphosis, the internal coelomic complex of the larva is inverted by 180°. The significance of this inversion for the translocation of the anterior genes of the Hox cluster is discussed. The ancestors of Eleutherozoa began to crawl on the oral surface, which led to a shift of the anus to the aboral side. Thus, the ontogeny and phylogeny of echinoderms exhibits a change from bilateral symmetry to dissymmetry, and then the development of pentameric symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Achatz, J.G., Chiodin, M., Salvenmoser, W., et al., The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis), Org. Div. Evol., 2013, vol. 13, pp. 267–286.

    Article  Google Scholar 

  2. Adrianov A.V., Malakhov V.V., and Yushin V.V., Loriciferans—a new taxon of marine invertebrates, Biol. Morya, 1989, no. 2, p. 70–72.

  3. Agassiz, A., Tornaria, the young stage of Balanoglossus, Am. Nat., 1872, vol. 6, pp. 636–637.

    Google Scholar 

  4. Agassiz, A., The history of Balanoglossus and Tornaria, Mem. Am. Acad. Arts Sci., 1873, vol. 9, no. 2, pp. 421–436.

    Google Scholar 

  5. Aguinaldo, A.M.A., Turbeville, J.M., Linford, L.S., et al., Evidence for a clade of nematodes, arthropods and other moulting animals, Nature, 1997, vol. 387, pp. 489–493.

    Article  Google Scholar 

  6. Amemiya, S., Hibino, T., Nakano, H., et al., Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus, Acta Zool., 2015, vol. 96, no. 1, pp. 36–43.

    Article  Google Scholar 

  7. Andersson, K.A., Die Pterobranchier der Schwedischen Südpolar-Expedition, 1901–1903, Wiss. Erg. Schwed. Sudpolar-Exp. Stockh, 1907, vol. 5, pp. 1–122.

    Google Scholar 

  8. Arenas-Mena, C., Cameron, A.R., and Davidson, E.H., Spatial expression of Hox cluster genes in the ontogeny of a sea urchin, Development, 2000, vol. 127, pp. 4631–4643.

    Article  Google Scholar 

  9. Arenas-Mena, C., Martinez, P., Cameron, R.A., et al., Expression of the Hox gene complex in the indirect development of a sea urchin, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13062–13067.

    Article  Google Scholar 

  10. Arnone, M.I., Byrne, M., and Martinez, P., Echinodermata, Evolutionary Developmental Biology of Invertebrates, vol. 6, Wien: Springer, 2005, pp. 1–57.

    Google Scholar 

  11. Aronowicz, J. and Lowe, C.J., Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems, Integr. Comp. Biol., 2006, vol. 46, pp. 890–901.

    Article  Google Scholar 

  12. Ax, P., Das System der Metazoa III: Ein Lehrbuch der Phylogenetischen Systematik. Heidelberg: Spektrum Akad., 2001.

    Google Scholar 

  13. Ax, P., Multicellular Animals, Berlin: Springer Sci. Bus. Media, 2012.

    Google Scholar 

  14. Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y., et al., Hox gene expression during postlarval development of the polychaete Alitta virens, EvoDevo, 2013, vol. 4, no. 13.

  15. Balavoine, G., de Rosa, R., and Adouette, A., Hox clusters and bilaterian phylogeny, Mol. Phyl. Evol., 2002, vol. 24, pp. 366–373.

    Article  Google Scholar 

  16. Balser, E.J., Ruppert, E.E., and Jaeckle, W.B., Ultrastructure of auricularia larval coeloms: evidence for the presence of an axocoel, Biol. Bull., 1993, vol. 185, no. 1, pp. 86–96.

    Article  Google Scholar 

  17. Barrington, E.J.W., Observations on feeding and digestion in Glossobalanus minutes, Quart. J. Micr. Sci., 1940, vol. 82, pp. 227–260.

    Google Scholar 

  18. Barrois, J., Recherches sur le Développement de la Comatule (C. mediterranea), Rec. Zool. Suisse, 1888, no. 4, pp. 545–651.

  19. Bateson, W., The early stages in the development of Balanoglossus, Q. J. Microsc. Sci., 1884, vol. 24, pp. 208–236.

    Google Scholar 

  20. Bateson, W., The later stages in the development of Balanoglossus kowalevskii, with a suggestion on the affinities of the Enteropneusta, Q. J. Microsc. Sci., 1885, vol. 25, pp. 81–128.

    Google Scholar 

  21. Bateson, W., Continued account of the later stages in the development of Balanoglossus kowalevskii, and the morphology of the Enteropneusta, Q. J. Microsc. Sci., 1886, vol. 26, pp. 511–533.

    Google Scholar 

  22. Bather, F.A., The Echinoderma. A Treatise on Zoology, pt. 3, London: Adam & Charles Black, 1900.

    Google Scholar 

  23. Bather, F.A., Caradocian Cystidea from Girvan, Trans. Roy. Soc. Edin., 1913, no. 49, pp. 359–529.

  24. Becher, S., Rhabdomolgus ruber Keferstein und die Stammform der Holothurien, Z. Wiss. Zool., 1907, vol. 88, pp. 545–689.

    Google Scholar 

  25. Beklemishev V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh. T. 1. Promorfologiya. T. 2. Organologiya (Fundamentals of Comparative Anatomy of Invertebrates, vol. 1. Promorphology, vol. 2, Organology). Moscow: Nauka, 1964.

  26. Benito, J. and Pardos, F., Hemichordata, Microscopic Anatomy of Invertebrates. New York: Wiley-Liss, 1997, pp. 15–101.

    Google Scholar 

  27. Bourlat, S.J., Juliusdottir, T., Lowe, C.J., et al., Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida, Nature, 2006, vol. 444, pp. 85–88.

    Article  Google Scholar 

  28. Boveri, T., Die Polaritat der Oocyte, Ei und Larve der Strongylocentrotus lividus, Zool. Jahrb. Abt. Anat. Ont. Tiere, 1901, vol. 14, pp. 630–651.

    Google Scholar 

  29. Bromham, L.D. and Degnan, B.M., Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate+echinoderm clade, Evol. Dev., 1999, vol. 1, no. 3, pp. 166–171.

    Article  Google Scholar 

  30. Brooks, W.K. and Grave, C., Ophiura brevispina, Mem. Nat. Acad. Sci. Wash., 1899, vol. 5, pp. 79–100.

    Google Scholar 

  31. Brusca, R.C. and Brusca, G.J., Invertebrates, Sunderland, Massachusetts: Sinauer Associates, 2003.

    Google Scholar 

  32. Burdon-Jones, C., Development and biology of the larva of Saccoglossus horsti (Enteropneusta), Philos. Trans. R. Soc., B, 1952, vol. 236, no. 639, pp. 553–590.

    Google Scholar 

  33. Burdon-Jones, C., The feeding mechanism of Balanoglossus gigas, Mar. Sci. Lab. Univ. Wales, 1962, no. 261, Zool. 24, pp. 255–280.

  34. Bury, H., The early stages in the development of Antedon rosacea, Philos. Trans. R. Soc., B, 1888, vol. 179, pp. 257–301.

    Google Scholar 

  35. Bury, H., Metamorphosis of Echinoderms, Quart. J. Micr. Sci., 1895, vol. 38, pp. 45–137.

    Google Scholar 

  36. Byrne, M., Martinez, P., and Morris, V., Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited, Evol. Dev., 2016, vol. 18, no. 2, pp. 137–143.

    Article  Google Scholar 

  37. Cameron, C.B., A phylogeny of the hemichordates based on morphological characters, Can. J. Zool., 2005, vol. 83, pp. 196–215.

    Article  Google Scholar 

  38. Cameron, C.B., Particle retention and flow in the pharynx of the Enteropneust worm Harrimania planktophilus: the filter-feeding pharynx may have evolved before the chordates, Biol. J. Linn. Soc., 2009, vol. 98, pp. 898–906.

    Google Scholar 

  39. Cannon, J.T., Rychel, A.L., Eccleston, H., et al., Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts, Mol. Phyl. Evol., 2009a, vol. 52, pp. 17–24.

    Article  Google Scholar 

  40. Cannon, J.T., Rychel, A.L., Swalla, B.J., et al., Hemichordate evolution: Derived body plans and suspect families, Int. Comp. Biol., 2009b, vol. 49, pp. E27–E27.

    Google Scholar 

  41. Cannon, J.T., Vellutini, B.C., Smith, J., et al., Xenacoelomorpha is the sister group to Nephrozoa, Nature, 2016, vol. 530, pp. 89–93.

    Article  Google Scholar 

  42. Caputi, L., Borra, M., Andreakis, N., et al., SNPs and Hox gene mapping in Ciona intestinalis, BMC Genomics, 2008, vol. 9, no. 39.

  43. Chia, F.-S., The embryology of a brooding starfish Leptasterias hexactis Stimpson, Acta Zool., 1968, vol. 49, no. 3, pp. 321–364.

    Article  Google Scholar 

  44. Chia, F.-S. and Buchanan, J.B., Larval development of Cucumaria elongata (Echinodermata: Holothuroidea), J. Mar. Biol. Ass. UK, 1969, vol. 49, pp. 151–159.

    Article  Google Scholar 

  45. Cisternas, P. and Byrne, M., Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua, Dev. Gen. Evol., 2009, vol. 219, pp. 613–618.

  46. Claparède, É., Recherches sur la structure des Annélides sédentaires, Mem. Soc. Phys. Hist. Nat. Gen., 1873, vol. 20, pp. 1–200.

  47. Clark, H.L., Synapta vivipara, a contribution of the morphology of Echinoderms, Mem. Boston Soc. Nat. Hist., 1898, vol. 5, pp. 53–88.

    Google Scholar 

  48. Conklin, E.G., The embryology of Amphioxus, J. Morphol., 1932, vol. 54, pp. 69–151.

    Article  Google Scholar 

  49. Cuénot, L., Études anatomiques et morphologiques sur les ophiures, Arch. Zool. Exp. Gen. Ser., 1888, vol. 6, pp. 33–82.

    Google Scholar 

  50. Cuénot, L., Études morphologiques sur les echinoderms, Arch. Biol., 1891, vol. 11, pp. 313–680.

    Google Scholar 

  51. Cuénot, L., Anatomie, éthologie et systématique des Échinodermes, in Traité de Zoologie, Paris: Masson et C-ie Editeurs, 1948, vol. 11, pp. 933–935.

    Google Scholar 

  52. Damas, D. and Stiasny, G., Les larves planctoniques d’enteropneustes (tornaria et planctosphaera), Verh. K. Vlaam. Acad. Wet. (KI. Wetenschappen), 1961, vol. 15, pp. 1–68.

  53. David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, EvoDevo, 2014, vol. 5, p. 22.

    Article  Google Scholar 

  54. Davis, B.M., The early life-history of Dolichoglossus pusillus Ritter, Univ. Calif. Pub. Zool., 1908, vol. 4, pp. 187–226.

    Google Scholar 

  55. Dawydoff, C., 1928. Traite d’Embryologie Comparee des Invertebres, Paris: Masson, 1928.

    Google Scholar 

  56. Dawydoff, C., Classe des Enteropneustes + Classe des Pterobranches, in Traité de Zoologie, Paris: Masson, 1948, vol. 2, pp. 369–489.

    Google Scholar 

  57. Delage, Y. and Hérouard, E.J.É., Traité de Zoologie concrète: Les Procordés, Paris: Schleicher Freres et Cie, 1898, vol. 8.

    Google Scholar 

  58. Dilly, P.N., The larva of Rhabdopleura compacta (Hemichordata), Mar. Biol. (Berlin), 1973, vol. 18, pp. 69–86.

    Article  Google Scholar 

  59. Dilly, P.N., The habitat and behaviour of Cephalodiscus gracilis (Pterobranchia, Hemichordata) from Bermuda, J. Zool., 1985, vol. 207, pp. 223–239.

    Article  Google Scholar 

  60. Dilly, P.N., Cephalodiscus reproductive biology (Pterobranchia, Hemichordata), Acta Zool., 2013, vol. 95, pp. 111–124.

    Article  Google Scholar 

  61. Dohle, W., Die Verwandtschaftsbeziehungen der Grossgruppen der Deuterostomier: Alternative hypothesen und ihre begründungen, Sitz. Ges. Nat. Fr. Berlin, 2004, vol. 43, pp. 123–162.

  62. Dohrn, A., Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Genealogische Skizzen, Leipzig: Verlag von Wilhelm Engelmann, 1875, pp. 10–17.

  63. Dohrn, A., Studien zur urgeschichte des Wirbelthierkorpers, Mitt. Zool. St. Neap., 1901, vol. 15, pp. 1–279.

    Google Scholar 

  64. Dolmatov, I.Yu., Ginanova, T.T., and Frolova, L.T., Metamorphosis and definitive organogenesis in the holothurians Apostichopus japonicus, Zoomorphology, 2016, vol. 135, pp. 173–188.

    Article  Google Scholar 

  65. Dolmatov, I.Y. and Yushin, V.V., Larval development of Eupentacta fraudatrix (Holothuroidea, Dendrochirota), As. Mar. Biol., 1993, vol. 10, pp. 125–134.

    Google Scholar 

  66. Dominguez, P., Jacobson, A.G., and Jefferies, R.P.S., Paired gill slits in a fossil with a calcite skeleton, Nature, 2002, vol. 417, pp. 841–844.

    Article  Google Scholar 

  67. Dunn, C.W., Giribet, G., Edgecombe, G.D., et al., Animal phylogeny and its evolutionary implications, Ann. Rev. Ecol. Evol. Syst., 2014, vol. 45, pp. 371–395.

    Article  Google Scholar 

  68. Dunn, C.W., Hejnol, A., Matus, D.Q., et al., Broad phylogenomic sampling improves resolution of the animal tree of life, Nature, 2008, vol. 452, pp. 745–750.

    Article  Google Scholar 

  69. Edgecombe, G., Giribet, G., Dunn, C., et al., Higher-level metazoan relationships: recent progress and remaining questions, Org. Div. Evol., 2011, vol. 11, pp. 151–172.

    Article  Google Scholar 

  70. Edwards, C.L., The development of Holothuria floridana pourtales with especial reference to the ambulacral appendages, J. Morphol., 1909, vol. 20, pp. 211–230.

    Article  Google Scholar 

  71. Engle, S., Ultrastructure and development of the body cavities in Antedon bifida (Pennant, 1777) (Comatulida, Crinoida), PhD Thesis, Berlin, 2012.

  72. Ezhova, O.V., Egorova, E.A., and Malakhov, V.V., Transformations of the ophiuroid axial complex as a result of the shifting of the madreporite to the oral side, Biol. Bull., 2016a, vol. 43, no. 6., pp. 494–502.

    Article  Google Scholar 

  73. Ezhova, O.V., Egorova, E.A., and Malakhov, V.V., Ultrastructural evidence of the excretory function in the asteroid axial organ (Asteroidea, Echinodermata), Dokl. Biol. Sci., 2016b, vol. 468, pp. 129–132.

    Article  Google Scholar 

  74. Ezhova, O.V., Ershova, N.A., and Malakhov, V.V., Microscopic anatomy of the axial complex and associated structures in the sea cucumber Chiridota laevis Fabricius, 1780 (Echinodermata, Holothuroidea), Zoomorphology, 2017, vol. 136, no. 2, pp. 205–217.

    Article  Google Scholar 

  75. Ezhova, O.V., Lavrova, E.A., Ershova, N.A., et al., Microscopic anatomy of the axial complex and associated structures in the brittle star Ophiura robusta Ayres, 1854 (Echinodermata, Ophiuroidea), Zoomorphology, 2015, vol. 134, no. 2, pp. 247–258.

    Article  Google Scholar 

  76. Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., Microscopic anatomy of the of the axial complex in the starfish Asterias rubens (Echinodermata, Asteroidea), Biol. Bull., 2013, vol. 40, no. 8, pp. 643–653.

    Article  Google Scholar 

  77. Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., The morphology of the axial complex and associated structures in Asterozoa (Asteroidea, Echinoidea, Ophiuroidea), Rus. J. Mar. Biol., 2014, vol. 40, no. 3, pp. 153–164.

    Article  Google Scholar 

  78. Ezhova, O.V. and Malakhov, V.V., Axial complex of Crinoidea: comparison with other Ambulacraria, J. Morphol., 2020, vol. 281, no. 11, pp. 1456–1475.

    Article  Google Scholar 

  79. Ezhova, O.V. and Malakhov, V.V., Are there the kidneys of echinoderms? Priroda, 2016a, no. 7, pp. 22–29.

  80. Ezhova, O.V. and Malakhov, V.V., How did the gill slits originate? Priroda, 2016b, no. 10, pp. 9–15.

  81. Ezhova, O.V. and Malakhov, V.V., Microscopic anatomy and fine structure of the Skeleton–Heart–Kidney complex in Saccoglossus mereschkowskii (Hemichordata, Enteropneusta). 4. Glomerulus, proboscis coelom, and proboscis coelomoduct, Rus. J. Zool., 2010, vol. 89, no. 8, pp. 899–923.

    Google Scholar 

  82. Ezhova, O.V. and Malakhov, V.V., The axial complex of Echinoderms represents the kidney and is homologous to the Hemichordate heart-kidney, Paleontol. J., 2021a, vol. 55, pp. 1029–1038.

    Article  Google Scholar 

  83. Ezhova, O.V. and Malakhov, V.V., Coelom metamerism in Echinodermata, Paleontol. J., 2021b, vol. 55, pp. 1073–1083.

    Article  Google Scholar 

  84. Ezhova, O.V. and Malakhov, V.V., The nephridial hypothesis of the gill slit origin, J. Exp. Zool., Part B, 2015, no. 324B, pp. 647–652.

  85. Ezhova, O.V., Malakhov, V.V., and Egorova, E.A., Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea), J. Morphol., 2018, vol. 279, no. 6, pp. 792–808.

    Article  Google Scholar 

  86. Fauvel, P., Classe des Annelides Polychetes, in Traite de Zoologie, Paris: Masson et Cie, 1959, vol. 5, no. 1, pp. 13–200.

  87. Fedotov, D.M., To the problem of homology of coeloms of echinoderms, enteropneustes, and chordates, Izv. Perm. Nauch.-Issled. Biol. Inst., 1923, vol. 2, no. 1, pp. 1–11.

    Google Scholar 

  88. Fedotov, D.M., Zur morphologie des axialen organkomplexes der Echinodermen, Z. Wiss. Zool., 1924, vol. 123, pp. 209–304.

    Google Scholar 

  89. Field, G.W., The larva of Asterias vulgaris, Q. J. Microsc. Sci., 1892, vol. 34, pp. 105–128.

    Google Scholar 

  90. Formery, L., Schubert, M., and Croce, J.C., Ambulacrarians and the ancestry of deuterostome nervous systems, in Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation. Springer, Cham, 2019, vol. 68, pp. 31–59.

    Google Scholar 

  91. Freeman, R., Ikuta, T., Wu, M., et al., Identical genomic organization of two hemichordate Hox clusters, Curr. Biol., 2012, vol. 22, pp. 2053–2058.

    Article  Google Scholar 

  92. Fritsch, M., Wollesen, T., de Oliveira, A.L., et al., Unexpected co-linearity of Hox gene expression in an aculiferan mollusk, BMC Evol. Biol., 2015, vol. 15, no. 151.

  93. Fröbius, A.C., Matus, D.Q., and Seaver, E.C., Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp., PLoS One, 2008, vol. 3, no. 12, e4004.

    Article  Google Scholar 

  94. Furlong, R.F. and Holland, P.W.H., Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of Cyclostomes, Zool. Sci., 2002, vol. 19, pp. 593–599.

    Article  Google Scholar 

  95. Gasiorowski, L. and Hejnol, A., Hox gene expression during development of the phoronid Phoronopsis harmeri, EvoDevo, 2020, vol. 11, no. 2.

  96. Gaunt, S.J., Hox cluster genes and collinearities throughout the tree of animal life, Int. J. Dev. Biol., 2018, vol. 62, nos. 11–12, pp. 673–683.

    Article  Google Scholar 

  97. Gee, H., Before the Backbone, Suffolk: Chapman & Hall, 1996, pp. 201–286.

    Google Scholar 

  98. Gemmill, J.F., The development of the starfish Solaster endeca Fobes, Trans. Zool. Soc., 1912, vol. 20, no. 1, pp. 1–71.

    Article  Google Scholar 

  99. Gemmill, J.F., The development and certain points in the adult structure of the starfish Asterias rubens L., Philos. Trans. R. Soc., B, 1914, vol. 205, pp. 213–294.

    Google Scholar 

  100. Gemmill, J.F., Double hydrocoele in the development and metamorphosis in the larva of Asterias rubens L., Q. J. Microsc. Sci., 1915, no. 61, pp. 51–80.

  101. Gemmill, J.F., The development of the starfish Crossaster papposus Müller and Troschel, Q. J. Microsc. Sci., 1920, no. 64, pp. 155–189.

  102. Gill, E.D. and Caster, K.E., Carpoid echinoderms from the Silurian and Devonian of Australia, Bull. Am. Paleontol., 1960, vol. 41, pp. 1–71.

    Google Scholar 

  103. Gilmour, T.H.J., An analysis of videotape recording of larval feeding in the sea urchin Lytechinus pictus (Verril), Can. J. Zool., 1985, vol. 63, pp. 1354–1359.

    Article  Google Scholar 

  104. Gilmour, T.H.J., Streamline and particles paths in the feeding mechanisms of larvae of the sea urchin Lytechinus pictus Verril, J. Exp. Mar. Biol. Ecol., 1986, vol. 5, pp. 27–36.

    Article  Google Scholar 

  105. Gilmour, T.H.J., Feeding behavior of holothurians larvae, Am. Zool., 1988, vol. 28, p. 67.

    Google Scholar 

  106. Giribet, G., New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics, Org. Div. Evol., 2016, vol. 16, pp. 419–426.

    Article  Google Scholar 

  107. Gonzalez, P. and Cameron, C.B., The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeding structures, Biol. J. Linn. Soc., 2009, vol. 98, pp. 898–906.

    Article  Google Scholar 

  108. Gonzalez, P., Jiang, J.Z., and Lowe, C.J., The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae), Front. Zool., 2018, vol. 15, p. 26.

    Article  Google Scholar 

  109. Gonzalez, P., Uhlinger, K.R., and Lowe, C.J., The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory, Curr. Biol., 2017, vol. 27, no. 1, pp. 87–95.

    Article  Google Scholar 

  110. Goto, S., The metamorphosis of Asterias pallida with special reference to the fate of the body cavities, J. Coll. Sci., Imp. Univ. Tokyo, 1897, no. 10, pp. 239–278.

  111. Goto, R.E., Monnington, J., Sciberras, M., et al., Phylogeny of Echiura updated, with a revised taxonomy to reflect their placement in Annelida as sister group to Capitellidae, Invertebr. Syst., 2020, vol. 34, pp. 101–111.

    Article  Google Scholar 

  112. Grave, C., Embryology of Ophiocoma echinata, Agassiz. (Preliminary note.), Ann. Mag. Nat. Hist. Ser., 1899a, vol. 3, pp. 456–461.

    Article  Google Scholar 

  113. Grave, C., Ophiura brevispina, Mem. Nat. Acad. Sci., 1899b, vol. 8, pp. 1–166.

    Google Scholar 

  114. Grave, C., On the occurrence among echinoderms of larvae with cilia arranged in transverse rings, with a suggestion as to their significance, Biol. Bull., 1903, vol. 5, pp. 169–186.

    Article  Google Scholar 

  115. Grobben, K., Die systematische Einteilung des Tierreiches, Verh. Kais. Zool.-Bot. Ges., Wien, 1908, vol. 58, pp. 491–511.

  116. Grobben, K., Theoretische erorterungen betreffend die phylogenetische Ableitung der Echinodermen, Sitz. Akad. Wiss. Wien, 1923, vol. 132, pt. 1, pp. 263–290.

    Google Scholar 

  117. Hadfield, M., Hemichordata, in Reproduction of Marine Invertebrates, New York: Acad. Press, 1975, pp. 185–240.

    Google Scholar 

  118. Halanych, K.M., Suspension feeding by the lophophore-like apparatus of the pterobranch hemichordate Rhabdopleura normani, Biol. Bull., 1993, vol. 185, pp. 417–427.

    Article  Google Scholar 

  119. Halanych, K.M., The new view of animal phylogeny, Ann. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–256.

    Article  Google Scholar 

  120. Hamann, O., Beiträge zur Histologie der Echinodermen. Heft 3. Die Anatomie und Histologie der Echiniden und Spatangiden, Jena: G. Fischer, 1887.

    Google Scholar 

  121. Hara, Y., Yamaguchi, M., Akasaka, K., et al., Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus, Dev. Gen. Evol., 2006, vol. 216, pp. 797–809.

    Article  Google Scholar 

  122. Hart, M.W., Particle captures and the method of suspension feeding by echinoderm larvae, Biol. Bull., 1991, vol. 180, pp. 12–27.

    Article  Google Scholar 

  123. Hatschek, B., Studien über Entwicklung des Amphioxus, Arb. Zool. Inst. Univ. Wien Zool. Stn. Triest, 1881, vol. 4, pp. 1–88.

    Google Scholar 

  124. Hatschek, B., The Amphioxus and its Development, London: Swan Sonnenschein, 1893.

    Google Scholar 

  125. Heider, K., Zur Entwicklung von Balanoglossus clavigerus, Zool. Anz., 1909, vol. 34, pp. 695–704.

    Google Scholar 

  126. Heider, K., Über Organverlagerungen bei der Echinodermen-Metamorphose, Verh. Dtsch. Zool. Ges., 1912, vol. 22, pp. 239–251.

    Google Scholar 

  127. Heider, K., Entwicklungsgeschichte und Morphologie der Wirbellosen, Kultur Ggw., 1913, vol. 2, no. 4.

  128. Hejnol, A., Obst, M., Stamatakis, A., et al., Assessing the root of bilaterian animals with scalable phylogenomic methods, Proc. R. Soc. B, 2009, vol. 276, pp. 4261–4270.

    Article  Google Scholar 

  129. Hejnol, A. and Pang, K., Xenacoelomorpha’s significance for understanding bilaterian evolution, Curr. Opin. Genet. Dev., 2016, vol. 39, pp. 48–54.

    Article  Google Scholar 

  130. Hérouard, E., Recherches sur les holothuries des côtes de France, Arch. Zool. Exp. Gen., 1889, vol. 7, pp. 573–704.

    Google Scholar 

  131. Hessling, R., Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications, Zoomorphology, 2002, vol. 121, pp. 221–234.

    Article  Google Scholar 

  132. Higgins, R.P. and Kristensen, R.M., New Loricifera from southeastern United States coastal waters, Smithson. Contrib. Zool., 438, Washington, DC: Smithson. Inst. Press, 1986.

  133. Holland, N.D., Electron microscopic study of development in a sea cucumber, Stichopus tremulus (Holothuroidea), from unfertilized egg through hatched blastula, Acta Zool., 1981, vol. 62, pp. 89–111.

    Article  Google Scholar 

  134. Holland, L.Z., Albalat, R., Azumi, K., et al., The amphioxus genome illuminates vertebrate origins and cephalochordate biology, Genet. Res., 2008a, vol. 18, pp. 1100–1111.

    Google Scholar 

  135. Holland, N.D., Clague, D.A., Gordon, D.P., et al., ‘Lophenteropneust’ hypothesis refuted by collection and photos of new deep-sea hemichordates, Nature, 2005, vol. 434, pp. 374–376.

    Article  Google Scholar 

  136. Holland, L.Z., Holland, N.D., and Gilland, E., Amphioxus and the evolution of head segmentation, Int. Comp. Biol., 2008b, vol. 48, pp. 630–646.

    Article  Google Scholar 

  137. Horst, C.J., van der, Hemichordata, in Klassen und Ordnungen des Tierreichs, Leipzig: Leipzig Akad. Verlagsgesellschaft M.B.H., 1939.

  138. Horstadius, S., Über die Entwicklung von Astropecten aurantiacus L., Pubbl. Staz. Zool. Napoli, 1939, vol. 17, no. 2, pp. 221–312.

    Google Scholar 

  139. Hyman, L.H., Echinodermata, in The Invertebrates, Vol. 4, New York: McGraw-Hill Book Comp., 1955.

    Google Scholar 

  140. Hyman, L.H., Phylum Hemichordata, in The Invertebrates: Smaller Coelomate Groups. New York: McGraw-Hill Book Comp., 1959, pp. 72–207.

    Google Scholar 

  141. Ikuta, T., Yoshida, N., Satoh, N., et al., Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 42, pp. 15118–15123.

    Article  Google Scholar 

  142. Inaba, D., Notes on the development of a holothurian, Caudina chilensis (J. Muller), Sci. Rep. Tohoku Univ. Fourth Ser. (Biol.), 1930, vol. 5, pp. 215–248.

    Google Scholar 

  143. Ivanov, A.V., Pogonofory. Fauna SSSR. Novaya seriya (Pogonophors. Fauna of the USSR. New Ser.), Moscow–Leningrad: Izd. Akad. Nauk SSSR, 1960. no. 75.

  144. Ivanov, P.P., Obshchaya i sravnitel’naya embriologiya (General and Comparative Embryology), Moscow–Leningrad: Biomedgiz, 1937.

  145. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. T. 3. Iglokozhie i polukhordovye (Comparative Embryology of Invertebrate Animals. Vol. 3. Echinoderms and Hemichordates), Moscow: Nauka, 1978a.

  146. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. T. 4. Nizshie khordovye (Comparative Embryology of Invertebrate Animals. Vol. 4. Lower Chordates), Moscow: Nauka, 1978b.

  147. Jägersten, G., Evolution of the Metazoan Life Cycle: a Comprehensive Theory, L., N.-Y.: Acad. Press, 1972.

    Google Scholar 

  148. Janssen, R., Eriksson, B.J., Tait, N.N., et al., Onychophoran Hox genes and the evolution of arthropod Hox gene expression, Front. Zool., 2014, vol. 11.

  149. Jefferies, R.P.S., The subphylum Calcichordata (Jefferies, 1967)—primitive fossil chordates with echinoderm affinities, Bull. Br. Mus. (Nat. Hist.), Geol., 1968, no. 16, pp. 243–339.

  150. Jefferies, R.P.S., Ceratocystis perneri—a Middle Cambrian chordate with echinoderm affinities, Palaeontology, 1969, no. 12, pp. 494–535.

  151. Jefferies, R.P.S., A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships, Biol. J. Linn. Soc., 1972, no. 4, pp. 69–115.

  152. Jefferies, R.P.S., In defence of the calcichordates, Zool. J. Linn. Soc., 1981, no. 73, pp. 351–396.

  153. Jefferies, R.P.S., The ancestry of the Vertebrates, London: British Museum (Natural History), 1986.

  154. Jefferies, R.P.S., Brown, N.A., and Daley, P.E.J., The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry, Acta Zool. (Stockh), 1996, vol. 77, pp. 101–122.

    Article  Google Scholar 

  155. Johnston, T. and Muirhead, N., Cephalodiscus, Rep. Brit. Austr. New Zeal. Ant. Exp. Ser. B, 1951, vol. 1, pp. 91–120.

    Google Scholar 

  156. Jondelius, U., Raikova, O.I., and Martinez, P., Xenacoelomorpha, a key group to understand Bilaterian evolution: morphological and molecular perspectives, in Evolution, Origin of Life, Concepts and Methods, Springer. Marseille: Aix-Marseille Univ., 2019, ch. 14, pp. 287–316.

  157. Jondelius, U., Ruiz-Trillo, I., Baguna, J., et al., The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes, Zool. Scripta, 2002, vol. 31, pp. 201–215.

    Article  Google Scholar 

  158. Jones, D.O.B., Alt, C.H.S., Priede, I.G., et al., Deep-sea surface-dwelling enteropneusts from the Mid-Atlantic Ridge: their ecology, distribution and mode of life, Deep-Sea Res., 2013, vol. II, no. 98, pp. 374–387.

    Google Scholar 

  159. Karaseva, N.P., Malakhov, V.V., and Galkin, S.V., The morphology and anatomy of the vestimentiferan worm Oasisia alvinae Jones, 1985 (Annelida: Siboglinidae). iii. Coelomic cavity, trophosome and blood, excretory and reproductive systems, Rus. J. Mar. Biol., 2012, vol. 38, pp. 122–138.

    Article  Google Scholar 

  160. Kaul-Strehlow, S. and Rottinger, E., Hemichordata. vol. 6. Deuterostomia, in Evolutionary Developmental Biology of Invertebrates, Wien: Springer, 2015, pp. 59–89.

  161. Kaul-Strehlow, S. and Stach, T., A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, histology and 3D-reconstructions, Front. Zool., 2013, vol. 10, no. 1.

  162. Kaul-Strehlow, S., Urata, M., Minokawa, T., et al., Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords, Org. Div. Evol., 2015, vol. 15, pp. 405–422.

    Article  Google Scholar 

  163. Kikuchi, M., Omori, A., Kurokawa, D., et al., Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus, Dev. Gen. Evol., 2015, vol. 225, no. 5, pp. 275–286.

    Article  Google Scholar 

  164. Knight-Jones, E.W., On the nervous system of Saccoglossus cambrensis (Enteropneusta), Philos. Trans. R. Soc., B, 1952, vol. 236, pp. 315–354.

    Google Scholar 

  165. Knight-Jones, E.W., Feeding in Saccoglossus (Enteropneusta), Proc. Zool. Soc. London, 1953, vol. 123, pp. 637–658.

    Article  Google Scholar 

  166. Kolata, D.R., Frest, T.J., and Mapes, R.H., The youngest Carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma, J. Paleont., 1991, vol. 65, no. 5, pp. 844–855.

    Article  Google Scholar 

  167. Kristof, A., Wollesen, T., and Wanninger, A., Segmental mode of neural patterning in Sipuncula, Curr. Biol., 2008, vol. 18, pp. 1129–1132.

    Article  Google Scholar 

  168. Krohn, A., Beobachtungen über Echinodermenlarven, Arch. Anat. Phys. Wiss. Med., 1854, pp. 208–213.

  169. Lacalli, T.C., Ciliary bands in echinoderm larvae: evidence for structural homologies and a common plan, Acta Zool. (Stockh.), 1993, vol. 74, pp. 127–133.

    Article  Google Scholar 

  170. Lacalli, T.C., A larval revelation, Nature, 2003, vol. 421, pp. 120–121.

    Article  Google Scholar 

  171. Lacalli, T.C. and West, J.E., The auricularia-to-doliolaria transformation in two aspidochirote holothurians, Holothuria mexicana and Stichopus californicus, Invert. Biol., 2000, vol. 119, pp. 421–432.

    Article  Google Scholar 

  172. Land, J., van der, and Nørrevang A., Structure and relationship of Lamellibranchia (Annelida, Vestimentifera), K. Danske Vidensk. Selsk. Skr., 1977, vol. 21, pp. 1–102.

    Google Scholar 

  173. Laumer, C.E., Fernandez, R., Lemer, S., et al., Revisiting metazoan phylogeny with genomic sampling of all phyla, Philos. Trans. R. Soc., B, 2019, p. 20190831.

  174. Lefebvre, B., Functional morphology of stylophoran echinoderms, Palaeontol., 2003, vol. 46, pp. 511–555.

    Article  Google Scholar 

  175. Lemche, H. and Wingstrand, K.G., The anatomy of Neopilina galatheae Lemche, 1957 (Mollusca, Tryblidiacea), Galathea Report, 1959, no. 3, pp. 9–72.

  176. Lemons, D. and McGinnis, W., Genomic evolution of Hox gene clusters, Science, 2006, vol. 313, pp. 1918–1922.

    Article  Google Scholar 

  177. Lester, S.M., Cephalodiscus sp. (Hemichordata: Pterobranchia): observations of functional morphology, behavior and occurrence in shallow water around Bermuda, Mar. Biol., 1985, vol. 85, pp. 263–268.

    Article  Google Scholar 

  178. Lester, S.M., Ultrastructure of adult gonads and development and structure of the larva of Rhabdopleura normani (Hemichordata: Pterobranchia), Acta Zool., 1988a, vol. 69, pp. 95–109.

    Article  Google Scholar 

  179. Lester, S.M., Settlement and metamorphosis of Rhabdopleura normani (Hemichordata: Pterobranchia), Acta Zool., 1988b, vol. 69, pp. 111–120.

    Article  Google Scholar 

  180. Lin, C.-Y., Tung, C.-H., Yu, J.-K., et al., Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava, J. Exp. Zool., Part B, 2016, vol. 326B, pp. 47–60.

    Article  Google Scholar 

  181. Littlewood, D.T.J., Smith, A.B., Clough, K.A., et al., The interrelationships of the echinoderm classes: morphological and molecular evidence, Biol. J. Linn. Soc., 1997, no. 61, pp. 409–438.

  182. Ludwig, H., Neue Beiträge zur Anatomie der Ophiuren, Z. Wiss. Zool., 1880, vol. 34, pp. 57–89.

    Google Scholar 

  183. MacBride, E.W., The development of Asterina gibbosa, Q. J. Microsc. Sci., 1896, vol. 38, pp. 339–411.

    Google Scholar 

  184. MacBride, E.W., The development of Echinus esculentus, Phil. Trans. R. Soc., 1903, vol. 195, pp. 285–327.

    Google Scholar 

  185. MacBride, E.W., The development of Ophiothrix fragilis, Q. J. Microsc. Sci., 1907, vol. 51, pp. 557–606.

    Google Scholar 

  186. MacBride, E.W., The early development of Amphioxus, Q. J. Microsc. Sci., 1898, vol. 40, pp. 589–612.

    Google Scholar 

  187. Malakhov, V.V., A new system of Bilateria, Vest. Russ. Acad. Sci., 2010, vol. 80, no. 1, pp. 27–44.

    Google Scholar 

  188. Malakhov, V.V., Problem of origin of echinoderm according to their embryonic evolution, in Problems of Study of Fossil and Present-Day Echinoderms, Tallinn: Akad. Nauk Estonskoi SSR. Inst. Geol., 1989, pp. 14–23.

  189. Malakhov V.V. A revolution in zoology: a new system of Bilateria, Priroda, 2009, no. 3, pp. 40–54.

  190. Malakhov, V.V., A revolution in zoology: New concepts of the metazoan system and phylogeny, Herald Russ. Acad. Sci., 2013, vol. 83, no. 2, pp. 123–127.

    Article  Google Scholar 

  191. Malakhov, V.V. and Adrianov, A.V., Golovokhobotnye (Cephalorhyncha)—novyi tip zhivotnogo tsarstva (Cephalorhyncha—a New Phylum of the Animal Kingdom), Moscow: KMK Sci. Press, 1995.

  192. Malakhov, V.V. and Bogomolova, E.V., New glance at the structure and origin of the body cavity of multicellular organisms, Priroda, 2016, no. 2, pp. 12–27.

  193. Malakhov, V.V., Bogomolova, E.V., Kuzmina, T.V., et al., Evolution of metazoan life cycles and the origin of pelagic larvae, Rus. J. Dev. Biol., 2019, vol. 50, no. 6, pp. 303–316.

    Article  Google Scholar 

  194. Malakhov, V.V. and Cherkasova, I.V., Embryonic and early larval evolution of holothurian Stichopus japonicus var. Armatus (Aspidochirota, Stichopodidae), Zool. Zh., 1991, vol. 70, no. 4, pp. 55–67.

    Google Scholar 

  195. Malakhov, V.V. and Cherkasova, I.V., Metamorphosis of holothurian Stichopus japonicus (Aspidochirota, Stichopodidae), Zool. Zh., 1992, vol. 71, no. 9, pp. 11–21.

    Google Scholar 

  196. Malakhov, V.V. and Kuzmina, T.V., Metameric origin of lateral mesenteries in Brachiopoda, Dokl. Biol. Sci., 2006, vol. 409, pp. 340–342.

    Article  Google Scholar 

  197. Malakhov, V.V., Popelyaev, I.S., and Galkin, S.V., Microscopic anatomy of Ridgeia phaeophiale Jones, 1985 (Pogonophora, Vestimentifera) and the problem of the position of vestimentifera in the system of the animal kingdom. IV. Excretory and reproductive systems and coelom, Rus. J. Mar. Biol., 1996, vol. 22, no. 5, pp. 249–261.

    Google Scholar 

  198. Maletz, J. and Cameron, C., Introduction to the class Pterobranchia Lankester, 1877, Treatise OnLine, 2016, no. 82, p. 2.

  199. Martin, A., Serano, J.M., Jarvis, E., et al., CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution, Curr. Biol., 2016, vol. 26, pp. 14–26.

    Article  Google Scholar 

  200. Mayer, G. and Bartolomaeus, T., Ultrastructure of the stomochord and the heart-glomerulus complex in Rhabdopleura compacta (Pterobranchia): phylogenetic implications, Zoomorphology, 2003, vol. 122, pp. 125–133.

    Article  Google Scholar 

  201. Metschnikoff, E., Studien über die Entwicklung der Echinodermen und Nemertinen, Mem. Acad. Sci. St.-Petersburg, Ser. 7, 1869, vol. 14, pp. 1–73.

  202. Metschnikoff, E.E., Untersuchungen über die Metamorphose einiger Seethiere. Über Tornaria, Z. Wiss. Zool., 1870, vol. 20, pp. 131–144.

    Google Scholar 

  203. Metschnikoff, E.E., Über die Systematische Stellung von Balanoglossus, Zool. Anz., 1881, vol. 4, pp. 153–157.

    Google Scholar 

  204. Meyer, E., Studien über den Körperbau der Anneliden, Mitt. Zool. Stat. Neapel, 1887, vol. 7, pp. 592–741.

    Google Scholar 

  205. Mito, T. and Endo, K., PCR survey of Hox genes in the crinoid and ophiuroid: evidence for anterior conservation and posterior expansion in the echinoderm Hox gene cluster, Mol. Phyl. Evol., 2000, vol. 14, no. 3, pp. 375–388.

    Article  Google Scholar 

  206. Miyamoto, N. and Saito, Y., Morphology and development of a new species of Balanoglossus (Hemichordata: Enteropneusta: Ptychoderidae) from Shimoda, Japan, Zool. Sci., 2007, vol. 24, pp. 1278–1285.

    Article  Google Scholar 

  207. Morgan, T.H., Growth and metamorphosis of tornaria, J. Morphol., 1891, vol. 5, pp. 407–458.

    Article  Google Scholar 

  208. Morgan, T.H., The development of Balanoglossus, J. Morphol., 1894, vol. 9, pp. 1–86.

    Article  Google Scholar 

  209. Morris, V.B. and Byrne, M., Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens, J. Exp. Zool., Part B., 2005, vol. 304, pp. 456–467.

    Article  Google Scholar 

  210. Morris, V.B. and Byrne, M., Oral–aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens, Dev. Gen. Evol., 2014, vol. 224, pp. 1–11.

    Article  Google Scholar 

  211. Mortensen, T., Studies in the development of Crinoids, Pap. Dep. Mar. Biol. Carnegie Inst. Washington, 1920, vol. 16, pp. 1–94.

    Google Scholar 

  212. Müller, J., Über den allgemeinen Plan in der Entwickelung der Echinodermen, Abh. Konig. Akad. Wiss. Berlin (Physik), 1853, pp. 25–65.

    Google Scholar 

  213. Naef, A., Studien zur generellen Morphologie der Mollusken 1. Teil: Über Torsion und Asymmetrie der Gastropoden, in Ergebnisse und Fortschritte der Zoologie, Jena: Gustav Fisher, 1911, vol. 3, no. 2, pp. 73–164.

    Google Scholar 

  214. Nakano, H., Hibino, T., Oji, T., et al., Larval stages of a living sea lily (stalked crinoid echinoderm), Nature, 2003, vol. 421, pp. 158–160.

    Article  Google Scholar 

  215. Narasimhamurti, N., The development of Ophiocoma nigra, Quart. J. Micr. Sci., 1933, vol. 76, pp. 63–88.

    Google Scholar 

  216. Nielsen, C., The development of the brachiopod Crania (Neocrania) anomala (O. F. Müller) and its phylogenetic significance, Acta Zool. (Stockh.), 1991, no. 72, pp. 7–28.

  217. Nielsen, C. and Hay-Schmidt, A., Development of the enteropneust Ptychodera flava: ciliary bands and nervous system, J. Morphol., 2007, vol. 268, pp. 551–570.

    Article  Google Scholar 

  218. Ohshima, H., On the development of Cucumaria echinata v. Marenzeller, Q. J. Microsc. Sci., 1921, vol. 65, pp. 173–246.

    Google Scholar 

  219. Olsen, H., The development of the brittle-star Ophiopholis aculeata with a short report on the outer hyaline layer, Berg. Mus. Årb., 1942, no. 6, pp. 1–107.

  220. Onai, T., Adachi, N., and Kuratani, S., Metamerism in cephalochordates and the problem of the vertebrate head, J. Dev. Biol., 2017, vol. 621–632.

  221. Osborn, K.J., Kuhnz, L.A., Priede, I.G., et al., Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea, Philos. Trans. R. Soc., B, 2012, vol. 279, pp. 1646–1654.

    Book  Google Scholar 

  222. Osterud, H.L., Preliminary observations on the development of Leptasterias hexactis, Publ. Puget Sound Biol. St., 1918, vol. 2, pp. 1–15.

    Google Scholar 

  223. Perseke, M., Golombek, A., Schlegel, M., et al., The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny, Mol. Phyl. Evol., 2013, vol. 66, pp. 898–905.

    Article  Google Scholar 

  224. Perseke, M., Hetmank, J., Bernt, M., et al., The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria, BMC Evol. Biol., 2011, vol. 11, p. 134.

    Article  Google Scholar 

  225. Peterson, K.J., Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes, Mol. Phyl. Evol., 2004, vol. 31, pp. 1208–1215.

    Article  Google Scholar 

  226. Peterson, K.J. and Eernisse, D.J., The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas, Org. Div. Evol., 2016, vol. 16, pp. 401–418.

    Article  Google Scholar 

  227. Philippe, H., Brinkmann, H., Copley, R.R., et al., Acoelomorph flatworms are deuterostomes related to Xenoturbella, Nature, 2011, vol. 470, no. 7333, pp. 255–258.

    Article  Google Scholar 

  228. Philippe, H., Poustka, A.J., Chiodin, M., et al., Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Smbulacraria, Curr. Biol., 2019, vol. 29, pp. 1–9.

    Article  Google Scholar 

  229. Priede, I.G., Osborn, K.J., Gebruk, A.V., et al., Observations on torquaratorid acorn worms (Hemichordata, Enteropneusta) from the North Atlantic with descriptions of a new genus and three new species, Invert. Biol., 2012, vol. 131, no. 3, pp. 244–257.

    Article  Google Scholar 

  230. Rahman, I.A. and Clausen, S., Re-evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata), J. Syst. Palaeont., 2009, vol. 7, pp. 413–426.

    Article  Google Scholar 

  231. Rahman, I.A., Stewart, S.E., and Zamora, S., The youngest ctenocystoids from the Upper Ordovician of the United Kingdom and the evolution of the bilateral body plan in echinoderms, Acta Palaeont. Pol., 2015a, vol. 60, pp. 39–48.

    Google Scholar 

  232. Rahman, I.A., Thompson, J.R., Briggs, D.E.G., et al., A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan, Proc. R. Soc., B, 2019, vol. 286.

  233. Rahman, I.A. and Zamora, S., The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system, Zool. J. Linn. Soc., 2009, vol. 157, pp. 420–432.

    Article  Google Scholar 

  234. Rahman, I.A., Zamora, S., Falkingham, P.L., et al., Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome, Proc. R. Soc. B, 2015b, vol. 282.

  235. Rakaj, A., Fianchini, A., Boncagni, P., et al., Artificial reproduction of Holothuria polii: a new candidate for aquaculture, Aquaculture, 2019, vol. 498, pp. 444–453.

    Article  Google Scholar 

  236. Rao, K.P., The development of Glandiceps (Enteropneusta; Spengelidae), J. Morphol., 1953, vol. 93, pp. 1–18.

    Article  Google Scholar 

  237. Rao, K.P., Bionomics of Ptychodera flava Eschscholtz (Enteropneusta), J. Madras Univ., 1954.

    Google Scholar 

  238. Reich, A., Dunn, C., Akasaka, K., et al., Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa, PLoS ONE, 2015, vol. 10, no. 3.

  239. Reich, M. and Smith, A.B., Origins and biomechanical evolution of teeth in echinoids and their relatives, Palaeontol., 2009, vol. 52, pp. 1149–1168.

    Article  Google Scholar 

  240. Reichensperger, A., Zur Anatomie von Pentacrinus decorus, Z. Wiss. Zool., 1905, vol. 80, pp. 22–55.

    Google Scholar 

  241. Remane, A., Beiträge zur Systematik der Süsswassergastrotrichen, Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere, 1927, no. 53, pp. 269–320.

  242. Ridewood, W., Pterobranchia: Cephalodiscus, Nat. Ant. Exp. Nat. Hist. Rep. Zool., 1907, vol. 2, no. 5, pp. 1–67.

    Google Scholar 

  243. Riisgård, H.U. and Larsen, P.S., Particle capture mechanisms in suspension-feeding invertebrates, Mar. Ecol. Proc. Ser., 2010, vol. 418, pp. 255–293.

    Article  Google Scholar 

  244. Rimskaya-Korsakova, N., Dyachuk, V., and Temereva, E., Parapodial glandular organs in Owenia borealis (Annelida: Oweniidae) and their possible relationship with nephridia, J. Exp. Zool., Part B, 2020, vol. 334, no. 2, pp. 88–99.

    Article  Google Scholar 

  245. Robison, R.A. and Sprinkle, J., Ctenocystoidea: new class of primitive echinoderms, Science, 1969, vol. 166, no. 3912, pp. 1512–1514.

    Article  Google Scholar 

  246. Rosa, R., Grenier, J.K., Andreeva, T., et al., HOX genes in brachiopods and priapulids and protostome evolution, Nature, 1999, vol. 399, pp. 772–776.

    Article  Google Scholar 

  247. Rouse, G.W., Wilson, N.G., Carvajal, J.I., et al., New deep-sea species of Xenoturbella and the position of Xenacoelomorpha, Nature, 2016, vol. 530, pp. 94–97.

    Article  Google Scholar 

  248. Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny, Biol. Bull., 2012, vol. 39, pp. 162–171.

    Article  Google Scholar 

  249. Ruiz-Trillo, I. and Paps, J., Acoelomorpha: earliest branching bilaterians or deuterostomes? Org. Div. Evol., 2016, vol. 16, pp. 391–399.

    Article  Google Scholar 

  250. Runnström, S., Über die Entwicklung von Leptosynapta inhaerens (O.Fr. Müller), Berg. Mus. Årb., 1927, no. 1, pp. 1–80.

  251. Ruppert, E.E. and Balser, E.J., Nephridia in the larvae of hemichordates and echinoderms, Biol. Bull., 1986, no. 171, pp. 188–196.

  252. Ruppert, E.E., Barnes, R.D., and Fox, R.S., Hemichordata, Fox Invertebrate Zoology, Belmont: Thomson Brooks/Cole, 2004, vol. 27, pp. 857–929.

    Google Scholar 

  253. Ruppert, E.E. and Smith, P.R., The functional organization of filtration nephridia, Biol. Rev., 1988, no. 171, pp. 231–258.

  254. Sato, A., Bishop, J.D.D., and Holland, P.W.H., Developmental biology of pterobranch hemichordates: history and perspectives, Genesis, 2008, vol. 46, pp. 587–591.

    Article  Google Scholar 

  255. Schepotieff, A., Zur Organisation von Rhabdopleura, Vorl. Mitt. Berg. Mus. Årb., 1904, p. 1–21.

    Google Scholar 

  256. Schepotieff, A., Die Pterobranchier. Anatomische und histologische Untersuchungen über Rhabdopleura normanii Allman und Cephalodiscus dodecalophus M’Int. 1. Teil. Rhabdopleura normanii Allman. Die Anatomie von Rhabdopleura, Zool. Jahrb. Abt. Anat. Ont. Tiere, 1906, vol. 23, pp. 463–534.

    Google Scholar 

  257. Schepotieff, A., Die Pterobranchier. Anatomische und histologische Untersuchungen über Rhabdopleura normanii Allman und Cephalodiscus dodecalophus M’Int. 1. Teil. Rhabdopleura normanii Allman. 2. Abschnitt. Knospungsprozess und Gehäuse von Rhabdopleura, Zool. Jahrb. Abt. Anat. Ont. Tiere, 1907a, vol. 24, pp. 193–238.

    Google Scholar 

  258. Schepotieff, A., Die Pterobranchier. Anatomische und histologische Untersuchungen über Rhabdopleura normanii Allman und Cephalodiscus dodecalophus M’Int. 2. Teil. Cephalodiscus dodecalophus M’Int. 1. Abschnitt. Die Anatomie von Cephalodiscus, Zool. Jahrb. Abt. Anat. Ont. Tiere, 1907b, vol. 25, pp. 553–608.

    Google Scholar 

  259. Schepotieff, A.M., Pterobranchia, St. Petersburg, 1907c.

  260. Schepotieff, A., Die Pterobranchier. Anatomische und histologische Untersuchungen über Rhabdopleura normanii Allman und Cephalodiscus dodecalophus M’Int. 2. Teil. Cephalodiscus dodecalophus M’Int. 2. Abschnitt. Knospungsprozess von Cephalodiscus, Zool. Jahrb. Abt. Anat. Ont. Tiere, 1908, vol. 25, pp. 404–494.

    Google Scholar 

  261. Seeliger, O., Studien zur Entwicklungsgeschichte der Crinoiden (Antedon rosacea), Zool. Jahrb. Abt. Anat. Ont. Tiere, 1892, vol. 6, pp. 161–444.

    Google Scholar 

  262. Selenka, E., Beiträge zur Anatomie und Systematik der Holothurien, Zeit. wiss. Zool., 1867, vol. 17, pp. 291–374.

    Google Scholar 

  263. Selenka, E., Zur Entwicklung der Holothurien Holothuria tubulosa und Cucumaria doliolum, Z. Wiss. Zool., 1876, vol. 27, pp. 155–187.

    Google Scholar 

  264. Semon, R., Die Entwickelung der Synapta digitata und ihre Bedeutung für die Phylogenie der Echinodermen, Jena. Z. Naturwiss., 1888, vol. 22, pp. 175–309.

    Google Scholar 

  265. Seo, H.C., Edvardsen, R.B., Maeland, A.D., et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, 2004, vol. 431, pp. 67–71.

    Article  Google Scholar 

  266. Smiley, S., Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its phylogenetic implications, Biol. Bull., 1986, vol. 171, pp. 611–631.

    Article  Google Scholar 

  267. Smith, A.B., Classification of the Echinodermata, Paleontology, 1984, vol. 27, no. 3, pp. 431–459.

    Google Scholar 

  268. Smith, A.B. and Reich, M., Tracing the evolution of holothurian body plan through stem-group fossils, Biol. J. Linn. Soc., 2013, vol. 109, pp. 670–681.

    Article  Google Scholar 

  269. Sollas, W.J., Fossils in the University Museum, Oxford: I. On Silurian Echinoidea and Ophiuroidea, Quart. J. Geol. Soc. London, 1899, vol. 55.

  270. Spengel, J.W., Die Enteropneusten des Golfes von Neapel und der angrenzenden Meeres-Abschnitte, in Fauna und Flora des Golfes von Neapel. Herausg. Zool. St. Neap. 18. Monograph, Berlin: Verlag von R. Friedländer Sohn, 1893.

  271. Stach, T. and Kaul, S., The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail, Acta Zool., 2012, vol. 92, pp. 150–160.

    Article  Google Scholar 

  272. Stebbing, A.R.D., Aspects of the reproduction and life cycle of Rhabdopleura compacta (Hemichordata), Mar. Biol. (Berlin), 1970, vol. 5, pp. 205–212.

    Article  Google Scholar 

  273. Stiasny, G., Studien über die Entwicklung des Balanoglossus clavigerus. Delle Chiaje. I. Die Entwicklung der Tornaria, Mitt. Zool. Stat. Neapel, 1914a, vol. 22, pp. 255–290.

    Google Scholar 

  274. Stiasny, G., Studien über die Entwicklung des Balanoglossus clavigerus. Delle Chiaje. II. Darstellung der weiteren Entwicklung bis zur Metamorphose, Mitt. Zool. Stat. Neapel, 1914b, vol. 22, pp. 255–290.

  275. Stiasny-Wijnhoff, G. and Stiasny, G., Über Tornarien-Typen und ihre Beziehung zur Systematik der Enteropneusten, Zool. Anz., 1926, vol. 68, pp. 159–165.

  276. Stiasny-Wijnhoff, G. and Stiasny, G., Die Tornarien. Kritik der Beschreibungen und Vergleich sämtlicher bekannter Enteropneustenlarven, Erg. Fort. Zool. (Stuttgart), 1927, vol. 7, pp. 38–208.

    Google Scholar 

  277. Strathmann, R.R., The behavior of planktotrophic echinodermlarvae: mechanisms, regulation, and rates of suspension feeding, J. Exp. Mar. Biol. Ecol., 1971, vol. 6, pp. 109–160.

    Article  Google Scholar 

  278. Strathmann, R.R., Larval feeding in echinoderms, Am. Zool., 1975, vol. 5, pp. 717–730.

    Google Scholar 

  279. Strathmann, R. and Bonar, D., Ciliary feeding of tornaria larvae of Ptychodera flava (Hemichordata: Enteropneusta), Mar. Biol. (Berlin), 1976, vol. 34, pp. 317–324.

    Article  Google Scholar 

  280. Struck, T., Schult, N., Kusen, T., et al., Annelid phylogeny and the status of Sipuncula and Echiura, BMC Evol. Biol., 2007, vol. 7, p. 57.

    Article  Google Scholar 

  281. Sutcliffe, O.E., Sudkamp, W.H., and Jefferies, R.P.S., Ichnological evidence on the behaviour of mitrates: two trails associated with the Devonian mitrate Rhenocystis, Lethaia, 2000, vol. 33, pp. 1–12.

    Article  Google Scholar 

  282. Svetlov, P.G., Primary heteronomy of the body structure of vertebrates, Arkh. Anat. Gist. Embr., 1957, vol. 34, no. 2, pp. 4–16.

    Google Scholar 

  283. Swalla, B.J. and Smith, A.B., Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 1557–1568.

    Article  Google Scholar 

  284. Tagawa, K., Nishino, A., Humphreys, T., et al., The spawning and early development of the Hawaiian acorn worm (Hemichordate), Ptychodera flava, Zool. Sci., 1998, vol. 15, pp. 85–91.

    Article  Google Scholar 

  285. Tarver, J.E., Sperling, E.A., Nailor, A., et al., miRNAs: small genes with big potential in metazoan phylogenetics, Mol. Biol. Evol., 2013, vol. 30, pp. 2369–2382.

    Article  Google Scholar 

  286. Telford, M.J., The animal tree of life, Science, 2013, vol. 339, pp. 764–766.

    Article  Google Scholar 

  287. Telford, M.J., Budd, G.E., and Herve, P., Phylogenomic insights into animal evolution, Curr. Biol., 2015, no. 25, pp. R876–R887.

  288. Temereva, E.N. and Malakhov, V.V., The evidence of metamery in adult brachiopods and phoronids, Invertebr. Zool., 2011, vol. 8, no. 2, pp. 91–112.

    Google Scholar 

  289. Thomas, I.M., Action of the gut in Saccoglossus otagoensis (Hemichordata: Enteropneusta), N. Z. J. Mar. Freshwater Res., 1972, vol. 6, pp. 560–569.

    Article  Google Scholar 

  290. Thompson, W., On the embryology of Antedon rosaceus, Philos. Trans. R. Soc., B, 1865, vol. 155, pp. 513–544.

    Google Scholar 

  291. Thorndyke, M.C., Chen W.-C., Beesley, P.W., et al., Molecular approach to echinoderm regeneration, Micr. Res. Techn., 2001, vol. 55, pp. 474–485.

    Article  Google Scholar 

  292. Tsuchimoto, J. and Yamaguchi, M., Hox expression in the direct-type developing sand dollar Peronella japonica, Dev. Dynamics, 2014, vol. 243, pp. 1020–1029.

    Article  Google Scholar 

  293. Ubaghs, G., Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the Uppermost Cambrian of Nevada, J. Paleont., 1963, vol. 37, no. 6, pp. 1133–1142.

    Google Scholar 

  294. Ubaghs, G., General characters of Echinodermata, in Treatise on Invertebrate Paleontology. Part S. Echinodermata 1, Lawrence: Univ. Kansas Press, 1967, pp. 3–60.

    Google Scholar 

  295. Ubaghs, G., Stylophora, in Treatise on Invertebrate Paleontology. Part S, Echinodemata. V. 1(2), Lawrence: Univ. Kansas Press, 1968, pp. S495–S565.

  296. Ubaghs, G. and Caster, K.E., Homalozoans, in Treatise on Invertebrate Paleontology, Lawrence: Univ. Kansas Press, 1967, pp. 495–627.

    Google Scholar 

  297. Ubisch, L., Die Entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa), Zeit. wiss. Zool., 1913, vol. 106, pp. 409–448.

    Google Scholar 

  298. Urata, M., Iwasaki, S., Ohtsuka, S., et al., Development of the swimming acorn worm Glandiceps hacksi: similarity to holothuroids, Evol. Dev., 2014, vol. 16, pp. 49–154.

    Article  Google Scholar 

  299. Urata, M., Tsuchimoto, J., Yasui, K., et al., The Hox8 of the hemichordate Balanoglossus misakiensis, Dev. Gen. Evol., 2009, vol. 219, pp. 377–382.

    Article  Google Scholar 

  300. Urata, M. and Yamaguchi, M., The development of the enteropneust hemichordate Balanoglossus misakiensis Kuwano, Zool. Sci., 2004, vol. 21, pp. 533–540.

    Article  Google Scholar 

  301. Wada, H., Garcia-Fernandez, J., and Holland, P.W.H., Colinear and segmental expression of amphioxus Hox genes, Dev. Biol., 1999, vol. 213, pp. 131–141.

    Article  Google Scholar 

  302. Wanninger, A., Kristof, A., and Brinkmann, N., Sipunculans and segmentation, Comm. Int. Biol., 2009, vol. 2, no. 1, pp. 56–59.

    Article  Google Scholar 

  303. Waren, A. and Hain, S., Laevipilina antarctica and Micropilina arntzi, two new monoplacophorans from the Antarctic, Veliger, 1992, vol. 35, pp. 165–176.

    Google Scholar 

  304. Wollesen, T., Rodriguez Monje, S.V., Luiz de Oliveira, A., et al., Staggered Hox expression is more widespread among molluscs than previously appreciated, Proc. R. Soc. B, 2018, vol. 285, 20181513.

    Article  Google Scholar 

  305. Zamora, S., Deline, B., Álvaro, J.J., et al., The Cambrian substrate revolution and the early evolution of attachment in suspension-feeding echinoderms, Earth-Sci. Rev., 2017, vol. 171, pp. 478–491.

    Article  Google Scholar 

  306. Zamora, S., Rahman, I.A., and Smith, A.B., Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution, PLoS ONE, 2012, vol. 7, no. 6, e38296.

  307. Zamora, S., Sumrall, C.D., and Vizcaïno, D., Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana, Acta Palaeontol. Polon., 2013, vol. 58, pp. 545–559.

    Google Scholar 

  308. Ziegler, A., Faber, C., and Bartolomaeus, T., Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea), Front. Zool., 2009, vol. 6, no. 1, pp. 10–31.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to S.V. Rozhnov for patient explanations, help, and support during the work on the manuscript, as well as the reviewers for the valuable advices related to the analysis of the paleontological material.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-14-50263-“Expansion.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Ezhova or V. V. Malakhov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhova, O.V., Malakhov, V.V. Origin of Echinodermata. Paleontol. J. 56, 938–973 (2022). https://doi.org/10.1134/S0031030122080020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030122080020

Keywords:

Navigation