Skip to main content
Log in

Mineralogical–geochemical characteristics of the bone detritus of Pleistocene mammals as a source of paleontological information

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

A complex mineralogical geochemical study of the bone detritus of large Pleistocene mammals inhabiting the Pechora Fore-Urals, the northernmost European part of their geographical range, is performed for the first time. The chemical composition, microstructure, content of 50 chemical elements are analyzed. The taphonomy of bones, extent of preservation of their initial properties, character and extent of fossilization are considered. The ultraporosity in the nanometer range is examined for the first time; it is established that it can be a marker of epigenetic changes in bones, beginning from the earliest stage of their fossilization. Based on X-ray structure and spectroscopic data, bone bioapatite is referred to carbonate–apatite of the B type. The results of thermal, chromatographic, and spectroscopic studies of collagen extracted from the bones of Pleistocene animals are discussed for the first time. The general trend of chemical degradation of bone proteins during fossilization is determined. The amino acid composition of bone collagen, the isotope composition of C, O, and N in biomineral and organic components of bones in the course of two-stage mass-spectrometer analysis of a complex sample are analyzed for the first time. Based on isotope-geochemical data conclusions concerning the diet and paleoclimatic and paleolandscape conditions of Pleistocene mammals are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, F.A., Lebedev, V.S., and Ovsyannikov, V.M., Izotopnyi sostav ugleroda gazov biokhimicheskogo proiskhozhdeniya (Isotope Composition of Carbon in Gases of Biochemical Origin), Moscow: Nedra, 1973.

    Google Scholar 

  • Bachura, O.P. and Kosintsev, P.A., Late Pleistocene and Holocene small- and large-mammal faunas from the northern Urals, Quat. Int., 2007, vol. 160, pp. 121–128.

    Article  Google Scholar 

  • Baryshnikov, G.F., Fauna Rossii i sopredel’nykh stran. Mlekopitayushchie (Fauna of Russia and Adjacent Countries: Mammals), vol. 1, no. 5: Medvezh’i (Ursidae) (Bears (Ursidae)), St. Petersburg: Nauka, 2007.

    Google Scholar 

  • Bellami, L., Novye dannye po IK-spektram slozhnykh molekul (New Data on the Infrared Spectra of Complex Molecules), Bellami, L., Ed., Moscow: Mir, 1971.

    Google Scholar 

  • Beznosov, P.A., An outlier of Mesozoic rocks on the Volonga River (northern Timan), Vest. Inst. Geol. Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2013, no. 12, pp. 24–26.

    Google Scholar 

  • Bocherens, H., Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna, in Advances in Mammoth research (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16–20, 1999), Deinsea, 2003, pp. 57–76.

    Google Scholar 

  • Bocherens, H., Billion, D., Paton-Mathis, M., Bonyean, D., Tonssaint, M., and Mariotti, A., Palaeoenviromental and palaeodietary implications of isotopic biogeochemistry of late interglacial Neandertal and mammal bones in Scladina Cave (Belgium), J. Archaeol. Sci., 1999, vol. 26, no. 6, pp. 599–607.

    Article  Google Scholar 

  • Borodina, E.V., Ressner, F., Karpov, S.I., and Selemenev, V.F., Synthesis and characteristics of organic–inorganic composite materials with the quaternary ammonium groups on the basis of the mesoporous silicate MSM-41, Ross. Nanotekhnol., 2010, vols. 11–12, pp. 98–103.

    Google Scholar 

  • Brik, A.B., Frank-Kamenetskaya, O.V., Dubok, V.A., et al., Features of isomorphic replacements in synthetic carbonatefluoapatite, Mineralog. Zh., 2013, no. 3, pp. 3–10.

    Google Scholar 

  • Budrugeas, P., Trndafir, V., and Albu, M.G., The effect of the hydration degree on the hydrothermal and thermo oxidative stability of some collagenous matrices, J. Therm. Anal. Colorimet., 2003, vol. 72, pp. 581–585.

    Article  Google Scholar 

  • Clauss, M. and Hummel, J., The digestive performance of mammalian herbivores: Why big may not be that much better, Mamm. Rev., 2005, vol. 2, no. 35, pp. 174–187.

    Article  Google Scholar 

  • Coltrain, J.B., Harris, J.M., Cerling, T.E., Ehlaring, J.R., Dearing, M.-D., Ward, J., and Allen, J., Rancho La Brea Stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California, Palaeogeogr., Palaeoclimat., Palaeoecol., 2004, vol. 205, pp. 199–219.

    Article  Google Scholar 

  • De Batista, T.M., Martins, V.C.A., and de Guzzi Plepis, A.M., Thermal behavior of in vitro mineralized anionic collagen matrices, J. Thermal. Anal. Calorim., 2009, vol. 50, pp. 945–949.

    Article  Google Scholar 

  • Dmitriev, A.I., Paleoekologicheskii analiz kostnykh ostatkov melkikh mlekopitayushchikh Prikaspiya i genezis prirodnykh ochagov chummy (Paleoecological Analysis of Bone Remains of Small Mammals of the Caspian Region and Genesis of the Natural Centers of Plague), Novosibirsk: Novosib. Gos. Pedagog. Univ., 2001.

    Google Scholar 

  • Doberenz, A.R. and Wyckoff, R.W.G., Fine structures in fossil collagen, Proc. Nat. Acad. Sci. USA, 1967, vol. 57, no. 3, pp. 111–129.

    Article  Google Scholar 

  • Drozdova, T.V., Geokhimiya aminokislot (Geochemistry of Aminoacids), Moscow: Nauka, 1977.

    Google Scholar 

  • Gilinskaya, L.G., Grigor’eva, T.N., Okuneva, G.N., and Vlasov, Yu.A., Study of mineral pathogenic formations on the human mitral valves: I. Chemical and phase composition, Zh. Strukt. Khim., 2003, vol. 44, no. 4, pp. 678–689.

    Google Scholar 

  • Golovanova, O.A., Gerk, S.A., Kuriganova, A.N., and Izmailov, R.R., Correlation between phase, element, and aminoacid composition of physiogene, pathogenic OMA and their synthetic analogues, Sist. Met. Tekhnol., 2012, no. 4, pp. 131–139.

    Google Scholar 

  • Guslitser, B.I. and Liiva, A.O., On the age of the locality of remains of Pleistocene mammals and the Byzovaya Paleolithic site on the Middle Pechora, Izv. Akad. Nauk Est. SSR, 1972, vol. 21, no. 3, pp. 250–253.

    Google Scholar 

  • Harrison, R.G. and Katzenberg, M.A., Paleodiet studies using stable carbon isotopes from bone apatite and collagen: examples from southern Ontario and San Nicolas Island, California, J. Anthropol. Archaeol., 2003, vol. 22, pp. 227–244.

    Article  Google Scholar 

  • Herwartz, D., Tutken, T., Jochum, K.P., and Sander, P.M., Rare earth elements systematics of fossil bone revealed by LA-ICP-MS analysis, Geochim. Cosmochim. Acta, 2013, vol. 103, pp. 161–183.

    Article  Google Scholar 

  • Iacumin, P., Bocherens, H., and Chaix, L., Keratin C and N stable isotope rations of fossil cattle horn from Kerma (Sudan), Quaternario, 2001, vol. 14, no. 1, pp. 41–46.

    Google Scholar 

  • Kabata-Pendias, A. and Pendias, H., Trace Elements in the Soils and Plants, Boca raton: CRC Press, 1989.

    Google Scholar 

  • Knerel’man, E.I., Zvereva, G.I., Kislov, M.B., Davydova, G.I., and Krestinin, A.V., Characteristics of products on the basis of single-layer carbon nanotubes by the method of nitrogen adsorption, Ross. Nanotekhnol., 2010, vol. 5, nos. 11–12, pp. 80–87.

    Google Scholar 

  • Konigsberger, E. and Konigsberger, L., Eds., Biominerslization— Medical Aspects of Solubility, Chichester: John Wiley and Sons, 2006.

    Book  Google Scholar 

  • Korago, A.A., Vvedenie v biomineralogiyu (Introduction into Biomineralogy), St. Petersburg: Nedra. 1992.

    Google Scholar 

  • Kosintsev, P., Dankalova, G., Osipova, E., Yakovlev, A., Alimbekova, L., and Popova-Lvova, M., Palaeoenviroment of the Late Pleistocene–Holocene interval in the Tanalyk River valley of the southern Trans-Ural Region (Russia), Quatern. Int., 2014, vol. 284, pp. 74–84.

    Article  Google Scholar 

  • Kosintsev, P.A., Plasteeva, N.A., and Vasil’ev, S.K., Wild horses (Equus (Eguus) s. l.) of Western Siberia in the Holocene, Zool. Zh., 2013, vol. 92, no. 9, pp. 1107–1116.

    Google Scholar 

  • Kosintsev, P.A. and Vasil’ev, S.K., Fauna of large mammals of the Late Neopleistocene of Western Siberia, Byull. Komiss. Izuch. Chetvert. Per., 2009, vol. 69, pp. 94–105.

    Google Scholar 

  • Kosintsev, P.A. and Vorob’ev, A.A., Remains of large mammals from the Viasher locality on the Middle Urals, in Pleistotsenovye i golotsenovye fauny Urala (Pleistocene and Holocene Faunas of the Urals), Chelyabinsk, 2000, pp. 105–122.

    Google Scholar 

  • Kovalsky, V.V. and Andrianova, G.A., Mikroelementy v pochvakh SSSR (Trace Elements in the Soils of the USSR), Moscow: Nauka, 1970.

    Google Scholar 

  • Krigbaum, J., Neolithic subsistence patterns in northern Borneo reconstructed with stable carbon isotopes of enamel, J. Anthropol. Archaeol., 2003, vol. 22, pp. 292–304.

    Article  Google Scholar 

  • Kudryavtseva, A.I. and Kudryavtsev, V.I., Mineral composition of fossils from the dinosaur locality of Kalbak-Kyry (Tuva), Paleontol. Zh., 2003, no. 4, pp. 96–102.

    Google Scholar 

  • Kuitems, M., van Kolfschoten, T., and van der Plicht, J., Elevated δ15N values in mammoths: A comparison with modern elephants, Archaeol. Anthropol. Sci., 2012. doi 10.1007/s12520-012-0095-2

    Google Scholar 

  • Kutzehberg, M.A. and Krouse, H.R., Application of stable isotope variation in human tissues for problems of identification, Canad. Soc. Forens. Sci. J., 1989, vol. 2, pp. 7–19.

    Article  Google Scholar 

  • Lafon, J.P., Champion, E., Bernache-Assollant, D., et al., Thermal decomposition of carbonated calcium phosphate apatites, J. Therm. Anal. Calorimet., 2003, vol. 72, pp. 1127–1134.

    Article  Google Scholar 

  • Landis, W.J., The strength of a calcitied tissue depends in part on the molecular structure and organization of its constituents mineral crystals in their organic matrix, Bone, 1995, vol. 16, pp. 533–544.

    Article  Google Scholar 

  • Leggett, R.M., Coprophagy and unusual thermoregulatory behavior in desert dwelling elephants in north-western Namibia, Pachyderm, 2005, vol. 36, pp. 113–115.

    Google Scholar 

  • Lemesheva, S.A., Chemical composition, characteristics of bone apatite and its analogues, Candidat’s Disertation in Cemistry, Omsk: Omsk. Gos. Univ., 2009.

    Google Scholar 

  • Lemesheva, S.A., Golovanova, O.A., Muromtsev, I.V., and Turenkov, S.V., Composition and structure of bone tissues of humans as reflection of the processes of pathogenic mineralization at coxarthrosis, Vest. Omsk. Univ., 2010, no. 2, pp. 106–112.

    Google Scholar 

  • Lemesheva, S.A., Golovanova, O.A., and Turenkov, S.V., Investigation of features of the composition of bone tissues in humans, Khim. Interes. Ustoich. Razvit., 2009, vol. 17, no. 3, pp. 327–332.

    Google Scholar 

  • Lozinski, J., Pierwiastki ziem rzadkich w kolciah kopalnych, Rocz. Pol. Tow. Geol., 1973, vol. 43, no. 3, pp. 407–435.

    Google Scholar 

  • Markova, A.K., Puzachenko, A.Yu., Kolfschoten, T., van, Kosintsev, P.A., Kuznetsova, T.V., Tikhonov, A.N., Bachura, O.N., Ponomarev, D.V., van der Plicht, J., and Kutiens, M., Dynamics of geographical ranges of the musk ox and primeval bison in the second half of the Late Pleistocene–Holocene of northern Eurasia, Izv. Ross. Akad. Nauk Ser. Geol., 2013, no. 6, pp. 110–121.

    Google Scholar 

  • Nakanisi, K., Infrakrasnye spektry i stroenie organicheskikh soedinenii: Prakticheskoe rukovodstvo: Perevod s angliiskogo (Infrared Spectra and Structure of Organic Compounds: Practical Guidance: Translation from English), Maltsev, A.A., Ed., Moscow: Mir, 1965.

    Google Scholar 

  • Nikolaev, V.I., Barbieri, M., Davanzo, S., Kuznetsova, T.V., Lonzhinelli, A., Sulerzhitskii, L.D., and Yakumin, P., Complex isotope studies of mammoths from Yakutia, in Kvarter-2005: Materialy IV Vserossiiskogo soveshchaniya po izucheniyu chetvertichnogo perioda (IV All-Russia Meeting on the Study of the Quaternary Period: Quaternary-2005), Syktyvkar: Geoprint, 2005, pp. 297–295.

    Google Scholar 

  • Nikolaev, V.I., Zhenoni, L., Yakushin, P., et al., Izotopnogeokhimicheskoe issledovanie pozdnepleistotsenovoi megafauny Severnoi Evrazii (Isotope–Geochemical Study of a Late Pleistocene Megafauna of Northern Eurasia), Moscow: Nauka, 2000.

    Google Scholar 

  • Orlov, D.S., Humic substances in the Biosphere, Soros. Obrazovat. Zh., 1997, no. 2, pp. 56–63.

    Google Scholar 

  • Orlov, D.S., Mikroelementy v pochvakh i zhivykh organizmakh, Soros. Obrazovat. Zh., 1998, no. 1, pp. 61–68.

    Google Scholar 

  • Ozarovskaya, O.V. Revelation of variation in the mineral composition of bone tissues at archeological excavations, in Materialy III Mezhdunarodnogo Simpoziuma “Biokostnye vzaimodeistviya: zhizn’ i kamen’” (III International Symposium on Bioinert Interactions: Life and Stone), St. Petersburg, 2007, pp. 134–137.

    Google Scholar 

  • Park, R. and Epstein, S., Carbon isotope fractionation during photosynthesis, Geochem. Cosmochem. Acta, 1960, vol. 21, nos. 1/2, pp. 111–118.

    Google Scholar 

  • Park, R. and Epstein, S., Metabolic fractionation of C-13 and C-12 in plants, Plant. Physiol., 1961, vol. 36, no. 2, pp. 63–70.

    Article  Google Scholar 

  • Pavlov, P.Yu., Cultural relationships of human populations of the Ural Region in the epoch of the Paleolithic, Vest. Perm. Univ. Istor., 2012, vol. 1 (18), pp. 6–23.

    Google Scholar 

  • Ponomarev, D.V., New data on the Late Paleolithic site of Byzovaya, in Struktura, veshchestvo, istoriya litosfery Timano-Severoural’skogo segmenta: Materialy VI nauchnoi konferentsii (VI Scientific Conference on the Structure, Substance, and History of the Lithosphere of the Timan–North Ural Segment), Syktyvkar: Geoprint. 1997, pp. 116–117.

    Google Scholar 

  • Ponomarev, D.V., Krupnye mlekopitayushchii evropeiskogo Severo-Vostoka v pozdnem pleistotsene i golotsene (Large Mammals of Northeastern Europe in the Late Pleistocene and Holocene), Syktyvkar: Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2001.

    Google Scholar 

  • Qu, Y., Jin, Ch., Zhang, Y., Hu, Y., Shang, X., and Wang, Ch., Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, south China during the Early Pleistocene, Quatern. Int., 2013, vol. 6, pp. 1–7.

    Google Scholar 

  • Rogozhnikov, G.I., Shemyakina, O.L., and Limonov, N.V., Thermogravimetric method for the determination of quantitative ratios of organic and inorganic substances in hard tissues of teeth, in Stomatologiya XXI veka: voprosy profilaktiki (Stomatology of the XXI Century: Problems of the Preventive Measures), Perm, 2001, pp. 92–95.

    Google Scholar 

  • Rosseeva, E.V., Crystalochemistry and morphogenesis of natural and biomimetic apatite-(CaF) organic composites, Candidate’s Dissertation on Geology–Mineralogy, St. Petersburg: St. Petersb Gos. Univ., 2010.

    Google Scholar 

  • Rozanov, A.Yu., Modern paleontology, Soros. Obrazovat. Zh., 1999, no. 1, pp. 47–55.

    Google Scholar 

  • Sahal, N. and Schoonen, M.A., Medical mineralogy and geochemistry, Rev. Mineral. Geochem., 2006, vol. 64, pp. 1–332.

    Article  Google Scholar 

  • Silaev, V.I., Mineralogiya fosfatonosnykh kor vyvetrivaniya (Polyarnyi Ural) (Mineralogy of Phosphate-bearing Crusts of Weathering: Polar Urals), St. Petersburg: Nauka, 1996.

    Google Scholar 

  • Silaev, V.I., Lyutoev, V.P., Petrovsky, V.A., and Khazov, A.F., An attempt at the study of natural carbonaceous substances and some of their synthetic analogues by the method of Raman spectroscopy, Mineralog. Zh., 2013, vol. 35, pp. 33–47.

    Google Scholar 

  • Silaev, V.I., Ponomarev, D.V., Simakova, Yu.S., Shanina, S.N., Smoleva, I.V., Tropnikov, E.M., and Khazov, A.F., Modern studies of fossil bone detritus: Paleontology, mineralogy, geochemistry, Vestn. Inst. Geol. Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2016, no. 5, pp. 19–31.

    Google Scholar 

  • Silaev, V.I., Slepchenko, S.M., Bondarev, A.A., Smoleva, I.V., Kiseleva, D.V., Shanina, S.N., Martirosyan, O.V., Tropnikov, E.M., and Khazov, A.F., Ust’-Ishim bone: Mineralogical geochemical characteristics as a source of paleontological, paleoanthropological, and paleoecological information, Vest. Perm. Univ. Geol., 2017, no. 1, pp. 6–30.

    Google Scholar 

  • Smirnov, N.G., Votyakov, S.L., Sadykova, N.O., Kiseleva, D.V., and Shchapova, Yu.V., Fiziko-khimicheskie kharakteristiki iskopaemykh kostnykh ostatkov mlekopitayushchikh i problema otsenki ikh otnositel’nogo vozrasta. Ch. 1. Termicheskii i mass-spektrometricheskii elementnyi analiz (Physical and Chemical Characteristics of Fossil Bone Remains of Mammals and the Problem of Estimation of Their Relative Age: Part 1. The Thermal and Mass–Spectrometer Element Analysis), Yekaterinburg: Goshchitskii, 2009.

    Google Scholar 

  • Staroverova, I.N., Maksimov, V.I., Zaitsev, S.Yu., and Kordonskaya, M.A., Mineral composition hair and integument in silver–black foxes in ontogeny, Sel’skokhoz. Boil., 2011, no. 4, pp. 57–61.

    Google Scholar 

  • Svendsen, J.I., Heggen, H.P., Hufthammer, A.K., Mangerud, J., Pavlov, P., and Roebroeks, W., Geo-archaeological investigations of Palaeolithic sites along the Ural Mountains — On the northern presence of humans during the last Ice Age, Quatern. Sci. Rev., 2010, vol. 30, pp. 3138–3156.

    Article  Google Scholar 

  • Tutken, T., Furrer, H., and Walter, T., Vennemann stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment, and diet, Quart. Int., 2007, vol. 164, pp. 139–150.

    Article  Google Scholar 

  • Ulakhovich, N.A., Complexes of metals in living organisms, Soros. Obrazovat. Zh., 1997, no. 8, pp. 27–32.

    Google Scholar 

  • Vagner, G.A., Nauchnye metody datirovaniya v geologii, arkheologii i istorii (Scientific Methods of Dating in Geology, Archaeologies, and History), Moscow: Tekhnosfera, 2006.

    Google Scholar 

  • Van Geel, B., Guthrie, R.D., Altmann, J.G., Broekens, P., Bull, I.D., Gill, F.L., Jansen, B., Nieman, A.M., and Gravendeel, B., Mycological evidence of coprophagy from the feces of an Alaskan late glacial mammoth, Quat. Sci. Rev., 2011, vol. 30, nos. 17–18, pp. 2289–2303.

    Article  Google Scholar 

  • Veins, A., Mineralization in organic matrix frameworks, Rev. Miner. Geochim., 2003, vol. 54, pp. 249–283.

    Article  Google Scholar 

  • Velichko, A.A., Global initial expansion as a part of the program of coevolution of the human and environment, in Chelovek zaselyaet planetu Zemlya: global’noe rasselenie gominid (Humans Occupy the Earth: Global Expansion of Hominids), Moscow, 1997, pp. 255–277.

    Google Scholar 

  • Voitkevich, G.V. and Kokin, A.V., Spravochnik po geokhimii (Handbook on Geochemistry), Moscow: Nedra. 1990.

    Google Scholar 

  • Votyakov, S.L., Kiseleva, D.V., Shchapova, Yu.V., Smirnov, N.G., and Sadykova, N.O., Fiziko-khimicheskie kharakteristiki iskopaemykh kostnykh ostatkov mlekopitayushchikh i problema otsenki ikh otnositel’nogo vozrasta. Ch. 2. IK- i radiospektroskopiya, mikroskopiya (Physicochemical Characteristics of Fossil Bone Remains of Mammals and the Problem of Estimation of Their Relative Age: Part 2. Infrared and Radiospectroscopy, Microscopy), Yekaterinburg: Goshchitskii, 2009a.

    Google Scholar 

  • Votyakov, S.L., Sadykova, N.O., and Smirnov, N.G., Thermal characteristics of fossil bone remains of small mammals as the basis for estimation of their relative age, Ezhegod.-2008 Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 2009b, vol. 156, pp. 290–295.

    Google Scholar 

  • Weiner, S. and Bar-Yose, J.O., States of preservation of bones from prehistoric sites in the Near East: A survey, J. Archaeol. Sci., 1990, vol. 17, pp. 187–196.

    Article  Google Scholar 

  • Yanin, B.T., Osnovy tafonomii (Fundamentals of Taphonomy), Moscow: Nedra, 1983.

    Google Scholar 

  • Yushkin, N.P., Katkova, V.I., and Lyyurov, S.V., Mineralogy of fossilized ammonites, Zap. VMO, 2011, part 140, no. 1, pp. 3–11.

    Google Scholar 

  • Yushkin, N.P., Silaev, V.I., Zharkov, V.A., et al., Mesozoic coprolites: Mineralogical geochemical characteristics and relation to the forecast of the phosphate content, in Trudy nauchnykh chtenii pamyati P.N. Chirvinskogo (Proceedings of Scientific Readings in Memory of P.N. Chirvinsky), vol. 16: Problemy mineralogii, petrografii i metallogenii (Problems of Mineralogy, Petrography, and Metallogeny), Perm: Perm. Gos. Univ., 2013, pp. 26–52.

    Google Scholar 

  • Yusupov, Sh.S., Features of the formation of the isotope composition of carbon in underground waters, using the seismically active zones of Central Asia as an example, Geokhimiya, 1994, no. 5, pp. 732–738.

    Google Scholar 

  • Zhu, Min., Yu, X., and Janger, Ph., A primitive fossil fish sheds light on the origin of bony fishes, Nature, 1999, vol. 397, pp. 607–610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Silaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silaev, V.I., Ponomarev, D.V., Kiseleva, D.V. et al. Mineralogical–geochemical characteristics of the bone detritus of Pleistocene mammals as a source of paleontological information. Paleontol. J. 51, 1395–1421 (2017). https://doi.org/10.1134/S0031030117130044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030117130044

Keywords

Navigation