Skip to main content

Mineralogic Characterisation of Archaeological Bone

  • Chapter
Isotopic Landscapes in Bioarchaeology

Abstract

Isotope studies on archaeological bone mineral require a validation of the material integrity. Diagenetically altered or contaminated bone mineral should be recognized as such and not be used for conclusions requiring pristine material. X-ray diffraction (XRD) and infrared spectroscopy (IR) are two complementary tools that investigate the state of the bone mineral. While modern XRD analysis is based on a direct comparison of observed data with a rigorous quantitative calculation of the diffractogram, the interpretation of the more easily measurable IR data is still largely empirical. We studied a set of archaeological animal bones sampled from the alpine region covering ages from 7600 to 550 years before present. We discarded visually decomposed bones completely. For the remaining samples, we investigated only the central part of the bone; the inner and outer periosteal surfaces were mechanically removed. For these selected samples, the crystalline lattice parameters in the a–b plane of the bioapatite and the average nanocrystallite size in the same plane show a small decreasing trend with age, which is almost insignificant compared to the observed natural variation in the bone apatite. For the c-direction, both the lattice parameter and the crystallite size are constant within this observed variation. We conclude that in the investigated samples there is—if any—only a very minor diagenetic recrystallisation of the original bone mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882

    Article  Google Scholar 

  • de Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Cryst 15:308–314

    Article  Google Scholar 

  • de Leeuw NH (2010) Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem 20:5376–5389

    Article  Google Scholar 

  • Elliot JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 631–672

    Google Scholar 

  • Enzo S, Bazzoni M, Mazzarello V, Piga G, Bandiera P, Melis P (2007) A study by thermal treatment and X-ray powder diffraction on burnt fragmented bones from tombs II, IV and IX belonging to the hypogeic necropolis of “Sa Figu” near Ittiri, Sassari (Sardinia, Italy). J Archaeol Sci 34:1731–1737

    Article  Google Scholar 

  • Gernaey AM, Waite ER, Collins MJ, Craig OE, Sokol RJ (2001) Survival and interpretation of archaeological proteins. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological science. Wiley, Chichester, pp 323–329

    Google Scholar 

  • Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014) Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing. Anal Bioanal Chem 406:4691–4704

    Article  Google Scholar 

  • Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Int 204:191–200

    Article  Google Scholar 

  • Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328

    Article  Google Scholar 

  • Ikoma T, Yamazaki A, Nakamura S, Akao M (1999) Preparation and structure refinement of monoclinic hydroxyapatite. J Solid State Chem 144:272–276

    Article  Google Scholar 

  • Jäger C, Welzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    Article  Google Scholar 

  • Landis WJ, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93:329–337

    Article  Google Scholar 

  • Lebon M, Reiche I, Frohlich F, Bahain J, Falgueres C (2008) Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1 and ν3 PO4. Anal Bioanal Chem 392:1479–1488

    Article  Google Scholar 

  • Lee-Thorp J, Sponheimer M (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol 23:208–216

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford, 324 p

    Google Scholar 

  • Mittemeijer EJ, Welzel U (eds) (2012) Modern diffraction methods. Wiley, Weinheim, 528 p

    Google Scholar 

  • Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27:1139–1150

    Article  Google Scholar 

  • Nielsen-Marsh CM, Gernaey A, Turner-Walker G, Hedges REM, Pike A, Collins MJ (2000) The chemical degradation of bone. In: Cox M, Mays S (eds) Human osteology in archaeology and forensic science. Greenwich Medical Media, London, pp 439–454

    Google Scholar 

  • Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen AM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  Google Scholar 

  • Pecharsky VK, Zavalij PY (2003) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York, NY, 741 p

    Google Scholar 

  • Pedone A, Corno M, Civalleri B, Malavasi G, Menziani C, Segrea U, Ugliengo P (2007) An ab initio parameterized interatomic force field for hydroxyapatite. J Mater Chem 17:2061–2068

    Article  Google Scholar 

  • Person A, Bocherens H, Saliège J-F, Paris F, Zeitoun V, Geerard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221

    Article  Google Scholar 

  • Piga G, Malgosa A, Thompson TJU, Enzo S (2008) A new calibration of the XRD technique for the study of archaeological burned human remains. J Archaeol Sci 35:2171–2178

    Article  Google Scholar 

  • Piga G, Thompson TJU, Malgosa A, Enzo S (2009a) The potential of X-ray diffraction in the analysis of burned remains from forensic contexts. J For Sci 54:3534–3539

    Google Scholar 

  • Piga G, Santos-Cubedo A, Moya Sola S, Brunetti A, Malgosa A, Enzo S (2009b) An X-ray diffraction (XRD) and X-ray fluorescence (XRF) investigation in human and animal fossil bones from Holocene to Middle Triassic. J Archaeol Sci 36:857–1868

    Article  Google Scholar 

  • Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40:778–785

    Article  Google Scholar 

  • Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97

    Article  Google Scholar 

  • Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    Article  Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  Google Scholar 

  • Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69

    Article  Google Scholar 

  • Rodriguez-Carvajal J, Roisnel T (2004) Line broadening analysis using FullProf: determination of microstructural properties. Mater Sci Forum 443:123–126

    Article  Google Scholar 

  • Rogers K, Beckett S, Kuhn S, Chamberlain A, Clement J (2010) Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeog Palaeoclimatol Palaeoecol 296:125–129

    Article  Google Scholar 

  • Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta 54:2433–2438

    Article  Google Scholar 

  • Shinomiyaa T, Shinomiya K, Orimoto C, Minami T, Tohno Y, Yamada MO (1998) In- and out-flows of elements in bones embedded in reference soils. Forensic Sci Int 98:109–118

    Article  Google Scholar 

  • Sillen A (1989) Diagenesis of the inorganic phase of cortical bone. In: Price TD (ed) The chemistry of prehistoric human bone. Cambridge University Press, New York, pp 211–229

    Google Scholar 

  • Sponheimer M, de Ruiter D, Lee-Thorp J, Späth A (2005) Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. J Hum Evol 48:147–156

    Article  Google Scholar 

  • Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G (2008) Bone diagenesis: new data from infrared spectroscopy and X-ray diffraction. Palaeogeog Palaeoclimatol Palaeoecol 266:168–174

    Article  Google Scholar 

  • Surovell TA, Stiner M (2001) Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642

    Article  Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer Synchrotron X-ray data from Al203. J Appl Cryst 20:79–83

    Article  Google Scholar 

  • Tonegawa T, Ikoma T, Yoshioka T, Hanagata N, Tanaka J (2010) Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J Mater Sci 45:2419–2426

    Article  Google Scholar 

  • Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeog Palaeoclimatol Palaeoecol 266:160–167

    Article  Google Scholar 

  • Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. In: Pinhasi R, Mays S (eds) Advances in human paleopathology. Wiley, Chichester, pp 3–29

    Google Scholar 

  • Tütken T, Vennemann TW, Pfretzschner H-U (2008) Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeog Palaeoclimatol Palaeoecol 266:254–268

    Article  Google Scholar 

  • Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23:2593–2606

    Article  Google Scholar 

  • Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille M-M, Babonneau F, Azaïs T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153

    Article  Google Scholar 

  • Weiner S, Bar-Yosef O (1990) State of preservation of bones from the prehistoric sites in the near East: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

  • Weiner S, Goldberg P, Bar-Yosef O (1993) Bone preservation in Kebara Cave, Israel using on-site Fourier-transform infrared spectroscopy. J Archaeol Sci 20:613–627

    Article  Google Scholar 

  • Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    Article  Google Scholar 

  • Wilson RM, Elliot JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414

    Article  Google Scholar 

  • Wilson RM, Elliton JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  Google Scholar 

  • Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944

    Article  Google Scholar 

  • Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482

    Article  Google Scholar 

  • Yi H, Balan E, Gervais C, Ségalen L, Blanchard M, Lazzeri M (2014)·Theoretical study of the local charge compensation and spectroscopic properties of B-type carbonate defects in apatite. Phys Chem Minerals 4:347–359

    Google Scholar 

Download references

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft, DFG, for financial support in Forschergruppe FOR1670, projects SCHM930/12-1 and GR959/21-1 and 20–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang W. Schmahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmahl, W.W., Kocsis, B., Toncala, A., Grupe, G. (2016). Mineralogic Characterisation of Archaeological Bone. In: Grupe, G., McGlynn, G. (eds) Isotopic Landscapes in Bioarchaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48339-8_5

Download citation

Publish with us

Policies and ethics