Skip to main content
Log in

On the nature and origin of cellular complexity: The combinatorial–eukaryogenetic scenario

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The ideas on the nature and origin of the cell nucleus published by K.S. Merezhkowsky in his book The Theory of Two Plasms as the Basis of Symbiogenesis, a New Study on the Origins of Organisms (1909) are still relevant. In this book, Merezhkowsky (1909, p. 86) wrote, “Part of my theory related to the nucleus, its nature and origin will be the subject of a separate paper, which will present facts serving as the basis for the ideas, which are here only touched upon briefly.” For various reasons, he was not able to publish the paper intended. Therefore, I here attempt to interpret Merezhkowsky’s original concepts on the nature and origin of the cell nucleus in a modern context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abanes-De Mello, A.A., Sun, Y.-L., Aung, S., and Pogliano, K., A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore, Gen. Devel., 2002, vol. 16, pp. 3253–3264.

    Article  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Roberts, K., and Walter, P., Molecular Biology of the Cell, 5th ed., Garland Sci., 2007.

    Google Scholar 

  • Asao, M. and Madigan, M.T., Taxonomy, phylogeny, and ecology of the heliobacteria, Photosynth. Res., 2010, vol. 104, pp. 103–111.

    Article  Google Scholar 

  • Broder, D.H. and Pogliano, K., Forespore engulfment mediated by a ratchet-like mechanism, Cell, 2006, vol. 126, pp. 917–928.

    Article  Google Scholar 

  • Bryant, D.A. and Frigaard, N-U., Prokaryotic photosynthesis and phototrophy illuminated, Trends Microbiol., 2006, vol. 14, pp. 488–496.

    Article  Google Scholar 

  • Budd, A. and Devos, D.P., Evaluating the evolutionary origins of unexpected character distributions within the bacterial Planctomycetes–Verrucomicrobia–Chlamydia Superphylum, Front. Microbiol., 2012, vol. 3, pp. 1–401.

    Article  Google Scholar 

  • Butschli, O., Bemerkungen uber Cyanophyceen und Bakteriaceea, Arch. Protistenkd., 1902, vol. 1, pp. 41–58.

    Google Scholar 

  • Canfield, D.E., Rosing, M.T., and Bjerrum, C., Early anaerobic metabolisms, Philos. Trans. R. Soc. London B., 2006, vol. 361, pp. 1819–1836.

    Article  Google Scholar 

  • Castaing, J-P., Nagy, A., Anantharaman, V., Aravind, L., and Ramamurthi, K.S., ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein, Proc. Nat. Acad. Sci. USA, 2013, vol. 110, no. 2, pp. E151–E160.

    Google Scholar 

  • Cavalier-Smith, T., Endosymbiotic origin of the mitochondrial envelope, in Endocytobiology II, Schwemmler, W. and Schenk, H.E.A., Eds., Berlin, Germany: De Gruyter, 1983, pp. 1027–1034.

    Google Scholar 

  • Cavalier-Smith, T., Chapter 15. The membranome and membrane heredity in development and evolution, in Organelles, Genomes and Eukaryote Phylogeny, Horner, D.S. and Hirt, R.P. Eds., CRC Press, 2004, pp. 335–352.

    Chapter  Google Scholar 

  • Devos, D., PVC bacteria: Variation of, but not exception to, the Gram-negative cell plan, Trends Microbiol., 2014a, vol. 22, pp. 14–20.

    Article  Google Scholar 

  • Devos, D.R., Evolution of the nucleus, Curr. Opin. Cell Biol., 2014b, vol. 28, pp. 8–15.

    Article  Google Scholar 

  • Devos, D.R. and Reynaud, E.G., Evolution. intermediate steps, Science, 2010, vol. 330, pp. 1187–1188.

    Article  Google Scholar 

  • Doan, T., Coleman, J., Marquis, K.A., Meeske, A.J., Burton, B.M., Karatekin, E., and Rudner, D.Z., FisB mediates membrane fission during sporulation in Bacillus subtilis, Gen. Develop., 2013, vol. 27, pp. 322–334.

    Article  Google Scholar 

  • Duda, V.I., Anaerobic spore-forming bacteria: Genera Clostridium and Desulfotomaculum, in Mir rastenii (World of Plants), Fedorov, A.A., Ed., Moscow: Prosveshchenie, 1974, vol. 1, pp. 225–247.

    Google Scholar 

  • Duran, A.M. and Meiler, J., Inverted topologies in membrane proteins: A mini-review, Comput. Struct. Biotecnol. J., 2013, vol. 8, pp. e201308004.

    Google Scholar 

  • Embley, T.M., Multiple secondary origins of the anaerobic lifestyle in eukaryotes, Philos. Trans. R. Soc. London B, 2006, vol. 361, pp. 1055–1067.

    Article  Google Scholar 

  • Embley, T.M. and Martin, W., Eukaryotic evolution, changes and challenges, Nature, 2006, vol. 440, pp. 623–630.

    Article  Google Scholar 

  • Errington, J., L-form bacteria, cell walls and the origin of life, Open Biol., 2013, vol. 3, p. 120143.

    Article  Google Scholar 

  • Freese, E.B., Roger, M.C., Klobat, W., and Reese, E., Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis, J. Bacteriol., 1970, vol. 101, no. 3, pp. 1046–1062.

    Google Scholar 

  • Fuerst, J.A., Intercellular compartmentation in Planctomycetes, Ann. Rev. Microbiol., 2005, vol. 59, pp. 299–328.

    Article  Google Scholar 

  • Fuerst, J.A., The PVC superphylum: Exceptions to the bacterial definition?, Anton. Leewenhoek, 2013, vol. 104, pp. 451–466.

    Article  Google Scholar 

  • Fuerst, J.A. and Sagulenko, E., Keys to eukaryality: Planctomycetes and ancestral evolution of cellular complexity, Front. Microbiol., 2012, vol. 3, pp. 1–12.

    Article  Google Scholar 

  • Fuerst, J.A. and Webb, R.I., Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 8184–8188.

    Article  Google Scholar 

  • Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P.H., Steele-Mortimer, O., Paiement, J., Bergeron, J.J.M., and Desjardins, M., Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages, Cell, 2002, vol. 110, pp. 119–131.

    Article  Google Scholar 

  • Gonchikov, G.G., The Origin of Eukaryotes: A New Scenario, Zh. Obshch. Biol., 2010, vol. 71, pp. 298–309.

    Google Scholar 

  • Gorlenko, V.M., Evolution of anoxygenic phototrophs in connection with changes in life conditions on the Earth, in Problemy rannei evolyutsii fotosinteza (Problems of the Early Evolution of Photosynthesis), Gorlenko, V.M. and Rozhnov, S.V., Eds., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2011, pp. 66–106.

    Google Scholar 

  • Gray, M.W., Lukas, J., Archibald, J.M., Keeling, P.J., and Doolittle, W.F., Cell biology: Irremediable complexity?, Science, 2010, vol. 320, pp. 920–921.

    Article  Google Scholar 

  • Gupta, R.S., Origin of diderm (Gram-negative) bacteria: Antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes, Anton. Leevenhoek, 2011, vol. 100, pp. 171–182.

    Article  Google Scholar 

  • Hanada, S. and Pierson, B.K., The family Chloroflexeae, in Prokaryotes, Springer, 2006, vol. 7, pp. 815–842.

    Google Scholar 

  • Hartley, M.D. and Imperiali, B., At the membrane frontier: A prospectus on the remarkable evolutionary conservation of polyprenoles and polyprenyl-phosphates, Arch. Biochem. Biophys., 2012, vol. 517, pp. 83–97.

    Article  Google Scholar 

  • Hartman, H., Photosynthesis and the origin of life, Orig. Life Evol. Biosph., 1998, vol. 28, pp. 515–521.

    Article  Google Scholar 

  • Hilbert, D.W. and Piggot, P.J., Compartmentalization of gene expression during Bacillus subtilis spore formation, Microb. Mol. Biol. Rev., 2004, vol. 68, pp. 234–262.

    Article  Google Scholar 

  • Jons, M.B., Rosenberg, J.N., Betenbough, M.J., and Krag, S.S., Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life, Biochem. Biophys. Acta, 2009, vol. 1790, pp. 485–494.

    Article  Google Scholar 

  • Joseph, R. and Schild, R., Origins, evolution, and distribution of life in the cosmos: Panspermia, genetics, microbes, and viral visitors from the stars, J. Cosmol., 2010, vol. 7, pp. 1616–1670.

    Google Scholar 

  • Kane, M.D. and Breznak, J.A., Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis, Arch. Microbiol., 1991, vol. 156, pp. 91–98.

    Article  Google Scholar 

  • Koga, Y., From promiscuity to the lipid divide: On the evolution of distinct membranes in Archaea and Bacteria, J. Mol. Evol., 2014, vol. 78, pp. 234–242.

    Article  Google Scholar 

  • Koga, Y., Nishihara, M., Morii, H., and Akagama-Matsushita, M., Ether polar lipids of methanogenic bacteria: Structures, comparative aspects and biosynthesis, Microbiol. Rev., 1993, vol. 57, pp. 164–182.

    Google Scholar 

  • Koumandou, V.L., Wickstead, B., Ginger, M.L., van der Giezen, M., Dacks, J.B., and Field, M.C., Molecular paleontology and complexity in the last eukaryotic common ancestor, Crit. Rev. Biochem. Mol. Biol., 2013, vol. 48, pp. 373–396.

    Article  Google Scholar 

  • Kuhn, T.S., The Structure of Scientific Revolutions, Chicago: Univ. Chicago Press, 1970.

    Google Scholar 

  • Kunin, E.V., Logika sluchaya. O prirode i proiskhozhdenii biologicheskoi evolyutsii (Logic of Chance: On the Nature and Origin of Biological Evolution), Moscow: Tsentrpoligraf, 2014.

    Google Scholar 

  • Kushner, D.J., Self-assembly of biological structures, Bact. Rev., 1969, vol. 33, pp. 302–345.

    Google Scholar 

  • Lake, J.A., Evidence for an early prokaryotic endosymbiosis, Nature, 2009, vol. 460, pp. 967–971.

    Article  Google Scholar 

  • Lake, J.A. and Sinsheimer, J.S., The deep roots of the ring of life, Genome Biol. Evol., 2013, vol. 5, pp. 2440–2448.

    Article  Google Scholar 

  • Leaver, M., Domingues-Cuevas, P., Coxhead, J.M., Daniel, R.A., and Errington, J., Life without a wall or division machine in Bacillus subtilis, Nature, 2009, vol. 457, pp. 849–853.

    Article  Google Scholar 

  • Liepe, D.D., Wolf, Y.I., Koonin, E.V., and Aravind, L., Classification of P-loop GTPases and related ATPases, J. Mol. Biol., 2002, vol. 317, pp. 41–72.

    Article  Google Scholar 

  • Lombard, J., Lopez-Garcia, P., and Moreira, D., The early evolution of lipid membranes in the three domains of life, Nat. Rev. Microbiol., 2012, vol. 10, pp. 507–515.

    Article  Google Scholar 

  • McInerney, J.O., Martin, W.F., Koonin, E.V., Allen, J.F., Galperin, M.Y., Lane, N., Archibald, J.M., and Embley, T.M., Planctomycetes and eukaryotes: A case of analogy not homology, BioEsseyes, 2011, vol. 33, pp. 810–817.

    Article  Google Scholar 

  • McInerney, J.O., O’Connell, M.J., and Pisani, D., The hybrid nature of the Eukaryota and a consilient view of life on Earth, Nat. Rev. Microbiol., 2014. Fdv. Online publ., doi 10.1038/nrmicro3271

    Google Scholar 

  • McMahon, H.T. and Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, 2005, vol. 438, pp. 590–596.

    Article  Google Scholar 

  • Meisner, J. and Moran, C.R., Jr., A LytM domain dictates the localization of proteins to the mother cell-forespore interface during bacterial endospore formation, J. Bacteriol., 2011, vol. 193, no. 3, pp. 591–598.

    Article  Google Scholar 

  • Merezhkowsky, C., Uber Nature und Ursprung der chromatophoren im Planzenreiche, Biol. Centralblat., 1905, vol. 25, pp. 593–604.

    Google Scholar 

  • Merezhkowsky, K.S., Teoriya dvukh plazm, kak osnova simbiogenezisa, novogo ucheniya o proiskhozhdenii organizmov (Theory of Two Plasma As a Basis of Symbiogenesis, a New Doctrine Concerning the Origin of Organisms), Kazan: Imper. Univ., 1909.

    Google Scholar 

  • Meyer, P., Gutierrez, J., Pogliano, K., and Dworkin, J., Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis, Mol. Microbiol., 2010, vol. 76, no. 4, pp. 956–970.

    Article  Google Scholar 

  • Omerod, J., Kimble, L.K., Nesbakken, T., Torgersen, Y.A., Woese, C.R., and Madigan, M.T., Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: Endospore- forming heliobacteria from rice field soils, Arch. Microbiol., 1996, vol. 165, pp. 226–234.

    Article  Google Scholar 

  • Pilhofer, M. and Jensen, G.J., The bacterial cytoskeleton: More than twisted filaments, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 125–133.

    Article  Google Scholar 

  • Pinevich, A.V., Intracytoplasmic membrane structures in bacteria, Endocytob. Cell Res., 1997, vol. 12, pp. 9–40.

    Google Scholar 

  • Poole, A. and Penny, D., Eukaryote evolution: Engulfed by speculation, Nature, 2007, vol. 447, p. 913.

    Article  Google Scholar 

  • Ramamurthi, K.S. and Losick, R., ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis, Mol. Cell, 2008, vol. 31, pp. 406–414.

    Article  Google Scholar 

  • Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E., The natural history of nitrogen fixation, Mol. Biol. Evol., 2004, vol. 21, pp. 541–554.

    Article  Google Scholar 

  • Rozanov, A.Yu., Bacterial paleontology, sedimentogenesis and early stages of biosphere evolution, Tr. Geol. Inst. Ross. Akad. Nauk, 2004, vol. 565 (Modern Problems of Geology, Gavrilov, Yu.O. and Khutorsky, M.D., Eds.), pp. 448–462.

    Google Scholar 

  • Rozanov, A.Yu., Problems of the study of life on the early Earth, in Sbornik tezisov 1-oi Vserossiiskoi shkoly–konferentsii po astrobiologii (Theses of the 1st All-Russia School Conference on Astrobiology), Pushchino, 2012, p. 32.

    Google Scholar 

  • Sagulenko, E., Morgan, G.P., Webb, R.I., Yee, B., Lee, K-C., and Fuerst, J.A., Structural studies of planctomycetes Gemmata obscuriglobus support cell compartmentalisation in a bacterium, PLOS ONE, 2014, vol. 9, p. E91344.

    Article  Google Scholar 

  • Setlow, P., Dynamics of the assembly of a complex macromolecular structure–- the coat of spores of the bacterium Bacillus subtilis, Mol. Microbiol., 2012, vol. 83, no. 2, pp. 241–244.

    Article  Google Scholar 

  • Silhavy, T.Y., Kahne, D., and Walker, S., The bacterial cell envelope, Cold Spring Harb. Perpect. Biol., 2010, vol. 2, p. a000414.

    Google Scholar 

  • Sutcliffe, I.C., A phylum level perspective on bacterial cell envelope architecture, Trends Microbiol., 2010, vol. 18, no. 10, pp. 464–470.

    Article  Google Scholar 

  • Sutcliffe, I.C., Cell envelope architecture in the chloroflexi: A shifting frontline in a phylogenetic turf war, Environ. Microbiol., 2011, vol. 13, no. 2, pp. 279–282.

    Article  Google Scholar 

  • Swanson, J.A., Chaping cups into phagosomes and macropinosomes, Nat. Re. Mol. Cell Biol., 2008, vol. 9, pp. 639–649.

    Article  Google Scholar 

  • Swithers, K.S., Fournier, G.P., Green, A.G., Gogarten, J.P., and Lapierre, P., Reassessment of the lineage fusion hypothesis for the origin of double membrane bacteria, Plos ONE, 2011, vol. 6, p. e23774.

    Article  Google Scholar 

  • Tocheva, E.I., Matson, E.G., Morris, D.M., Moussavi, F., Leadbetter, J.R., and Jensen, G.J., Peptidoglycan remodeling and convertion of an inner membrane into an outer membrane during sporulation, Cell, 2011, vol. 146, pp. 799–812.

    Article  Google Scholar 

  • Toju, H., Tanabe, A.S., Notsu, Y., Sota, T., and Fukatsu, T., Diversification of endosymbiosis: replacements, co-speciation and promiscuity in weevils, The ISME J., 2013, vol. 7, pp. 1378–1390.

    Article  Google Scholar 

  • Trail, D., Watson, E.B., and Tailby, N.D., The oxidation state of Hadean magmas and implications for early Earth’s atmosphere, Nature, 2011, vol. 480, pp. 79–82.

    Article  Google Scholar 

  • Trail, D., Watson, E.B., and Tailby, N.D., Insights into the Hadean Earth from experimental studies of zircons, J. Geol. Soc. India, 2013, vol. 81, pp. 605–636.

    Article  Google Scholar 

  • Tuff, J., Wade, J., and Wood, B.J., Volcanism on Mars controlled by early oxidation of the upper mantle, Nature, 2013, vol. 498, pp. 342–345.

    Article  Google Scholar 

  • Vaughan, S., Wickstead, B., Gull, K., and Addinall, S.G., Molecular evolution of FtsZ protein sequences encoded within the genomes of Archaea, Bacteria, and Eukaryota, J. Mol. Evol., 2004, vol. 58, pp. 19–39.

    Article  Google Scholar 

  • Vorob’eva, L.I., Arkhei. Uchebnoe posobie (Archaea: Handbook), Moscow: Akademkniga, 2007.

    Google Scholar 

  • Walker, J.R., Gnanam, A.J., Blinkova, A.L., Hermandson, M.J., Karymov, M.A., Lyubchenko, Y.L., Graves, P.R., Haystead, T.A., and Linse, K.D., Clostridium taeniosporum spore ribbon-like appendage structure, composition and genes, Mol. Microbiol., 2007, vol. 63, no. 3, pp. 629–643.

    Article  Google Scholar 

  • Wickramasinghe, N.C., The universe: A cryogenic habitat for microbial life, Cryobiology, 2004, vol. 48, pp. 113–125.

    Article  Google Scholar 

  • Woese, C.R., Debrunner-Vosbrinck, B.A., Ouazu, H., Stackebrandt, E., and Ludwig, W., Gram-positive bacteria: Possible photosynthetic ancestry, Science, 1985, vol. 229, pp. 762–765.

    Article  Google Scholar 

  • Wollman, F-A., Minai, L., and Nechushtai, R., The biogenesis and assembly of photosynthetic proteins in thylakoid membranes, Biochim. Biophys. Acta, 1999, vol. 1411, pp. 21–85.

    Article  Google Scholar 

  • Yutin, N. and Koonin, E.V., Archaeal origin of tubulin, Biol. Direct., 2012, vol. 7, p. 10.

    Article  Google Scholar 

  • Zavarzin, G.A., The role of combinatory events in the development of biodiversity, Priroda, 2002, no. 1, pp. 12–19.

    Google Scholar 

  • Zhaxybayeva, O., Lapierre, P., and Gotangen, J.P., Genome mosaicism and organismal lineages, Trends Genet., 2004, vol. 20, no. 5, pp. 254–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Gonchikov.

Additional information

All life comes from life (Latin: Omne vivum e vivo) K.S. Merezhkowsky, 1909

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchikov, G.G. On the nature and origin of cellular complexity: The combinatorial–eukaryogenetic scenario. Paleontol. J. 51, 1422–1439 (2017). https://doi.org/10.1134/S0031030117130020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030117130020

Keywords

Navigation