Skip to main content
Log in

Paedomorphosis and heterochrony in the origin and evolution of the class holothuroidea

  • Published:
Paleontological Journal Aims and scope Submit manuscript

“Features of the past that have disappeared from the pattern of adult organization can appear again in the posterity as though emerging from the bottom of the ontogeny. One can say that, for this character, the ontogenetic process in descendants as though untimely terminates short of reaching the final points, which were regularly passed by ancestors. Due to this untimely broken ontogeny the former character returns.” P. Sushkin (1915, p. 19)

“Why should heterochrony be such a common mode of evolution? The answer to this question appears to lie in a characteristic of evolution pointed out by François Jacob. Evolution proceeds by what Jacob calls “tinkering.” Unlike the de novo design of machines to make use of optimal engineering principles, evolutionary possibilities are limited by history. History in this sense refers to the particular traits or structures already present and available for modification.” Raff and Kaufman (1983, p. 179)

Abstract

The role of paedomorphosis as a particular case of heterochrony in the origin and evolution of the class Holothuroidea is analyzed. It is shown that holothurians are characterized by the presence of some paedomorphic characters (reduced skeleton, absence of an axial complex in the shape of a morphologically integrated structure, single gonad with one gonopore). In many members of the subclass Holothuriacea, sclerites of the body wall are arranged in two layers. Sclerites of the deeper layer develop as a perforated plate and correspond to the skeletal elements forming in other echinoderms the body skeleton, for example, the test of sea urchins. Sclerites of the superficial layer frequently look like various tables, develop like spines of other echinoderm classes, in particular, juvenile tetraradiate spines of sea urchins, and correspond to spines of other classes of Echinodermata. Ontogenetic changes at the stage of five first tentacles resulted in interruption at an early stage of the development with the catastrophic metamorphosis, which is typical for other Eleutherozoa. The ontogeny of holothurians acquired the evolutive (gradual) character; the adult body began to develop on the basis of the larval body and larval tissues were partially included in the body of adult holothurians. As a result, the place and developmental pattern of the radial complex of organs changed and heterochrony in the development of characters concerned with different coordination chains intensified; therefore, the modern body plan of holothurians was formed. The processes of paedomorphosis and heterochrony played an important role not only in the origin and formation of the class Holothuroidea, but also during its evolution. Paedomorphic processes became rather important in the evolution of the order Synaptida. Paedomorphic features are particularly prominent in the structure of small interstitial forms. In some holothurians, the paedomorphosis resulted in the change in relationships between symmetry planes. The bilateral plane of symmetry of these holothurians coincide with the plane of symmetry 2–1–2, which is positioned in the majority of holothurians at about 72° to the bilateral plane. Independently, but frequently in parallel, the intestinal loop disappeared, so that the gut became straight and suspended on mediodorsal mesentery almost throughout its extent. The combination of these processes in holothurians of the order Synaptida resulted in the formation of almost complete pentaradially bilateral symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrois, J., Recherches sur le developpement de la Comatule, Rec. Zool. Suisse., 1888, vol. 4, pp. 545–651.

    Google Scholar 

  • Becher, S., Über Synapta minuta n. sp., eine brutpflegende Synaptide der Nordsee, und über die contractilen Rosetten der Holothurien, Zool. Anz., 1906, vol. 30, no. 16, pp. 505–509.

    Google Scholar 

  • Becher, S., Rhabdomolgus ruber Keferstein und die Stammform der Holothurien, Z. Wiss. Zool., 1907, vol. 88, no. 4, pp. 545–689.

    Google Scholar 

  • Becher, S., Die systematische Stellung des Rhabdomolgus novae-zealandiae, Arch. Zool. Exp. Gen., Ser. 5., 1909. vol. 1, Notes et revue, pp. 33–43.

    Google Scholar 

  • Becher, S. Beitrage zur Morphologie und Systematik der Paractinopoden, Zool. Jahrb. Anat., 1910, vol. 29, pp. 315–366.

    Google Scholar 

  • Beklemishev, V.N., Principles of Comparative Anatomy of Invertebrates, vol. 1. Promorphology, Edinbourgh: Oliver and Boyd, and Univ. Chicago Press, 1969.

    Google Scholar 

  • Belyaev, G.M., Ultra-abyssal holothurians of the genus Myriotrochus (Order Apoda, fam. Myriotrochidae), Tr. Inst. Okeanol. Akad. Nauk SSSR., 1970, vol. 86, pp. 458–488.

    Google Scholar 

  • Bury, H., The metamorphosis of echinoderms, Q. J. Microsc. Sci., N. Ser., 1895, vol. 38, no. 149, pp. 45–135.

    Google Scholar 

  • Cameron, C.B., A phylogeny of the hemichordates based on morphological characters, Can. J. Zool., 2005, vol. 83, no. 1, pp. 196–215.

    Article  Google Scholar 

  • Cameron, C.B., Garey, J.R., and Swalla, B.J., Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla, Proc. Nat. Acad. Sci. USA., 2000, vol. 97, no. 9, pp. 4469–4474.

    Article  Google Scholar 

  • Cherbonnier, G., Recherches sur les Synaptes (Holothuries apodes) de Roscoff, Arch. Zool. Exp. Gén., 1953, vol. 90, no. 3, pp. 163–185.

    Google Scholar 

  • Clark, H.L., Synapta vivipara: A contribution to the morphology of echinoderms, Mem. Boston Soc. Nat. Hist., 1898, vol. 5, no. 3, pp. 53–88.

    Google Scholar 

  • Clark, H.L., The holothurians of the Pacific coast of North America, Zool. Anz., 1901, vol. 24, pp. 162–171.

    Google Scholar 

  • Clark, H.L., The Apodous holothurians: A monograph of the Synaptidae and Molpadiidae, Smithson. Contr. Knowl., 1908, vol. 35, pp. 1–231.

    Google Scholar 

  • Clark, H.L., The development of an apodous holothurian (Chiridota rotifera), J. Exp. Zool., 1910, vol. 9, no. 3, pp. 497–516.

    Article  Google Scholar 

  • Cuénot, L., Anatomie, éthologie et systématique des echinodermes, in Traité de zoologie, Grassé, P., Ed., Paris: Masson, 1948, vol. 11, pp. 3–272.

    Google Scholar 

  • Czihak, G., Untersuchungen über die Coelomanlagen und die Metamorphose des Pluteus von Psammechinus miliaris (Gmelin), Zool. Jahrb. Anat., 1960, vol. 78, pp. 235–256.

    Google Scholar 

  • Davey, N. and Whitfield, E., The Psolidae of New Zealand and some additions to the Macquarie Ridge Fauna (Echinodermata: Holothuroidea: Psolidae), Mem. Mus. Victoria., 2013, vol. 70, pp. 51–67.

    Google Scholar 

  • David, B. and Mooi, R., Embryology supports a new theory of skeletal homologies for the phylum Echinodermata, CR Acad. Sci. Paris, Sci. de la vie., 1996, vol. 319, pp. 577–584.

    Google Scholar 

  • David, B. and Mooi, R., Major events in the evolution of Echinoderms viewed by the light of embryology, in Echinoderms: San Francisco. Proceedings of the Ninth International Echinoderm Conference, San Francisco, California, USA, August 5–9, 1996. Mooi, R. and Telford, M., Eds., Rotterdam–Brookfield: A.A. Balkema, 1998, pp. 21–28.

    Google Scholar 

  • Dawydoff, C., Traité d’embriologie comparée des invertébrés, Paris: Masson and Cie, éditeurs, 1928.

    Google Scholar 

  • Dawydoff, C., Embryologie des échinodermes, in Traité de zoologie, Grassé, P., Ed., Paris: Masson, 1948, vol. 11, pp. 273–363.

    Google Scholar 

  • De Beer, G. R., Embryos and Ancestors, 3rd ed., Oxford: Clarendon Press, 1958.

    Google Scholar 

  • Délage, Y. and Hérouard, E. Traité de Zoologie concrète, vol. 8 Procordes, Paris: C. Reinwald, Schleicher Frères, 1898.

    Google Scholar 

  • Edwards, C.L., Variation, development and growth in Holothuria floridana Pourtalés and in Holothuria atra Jäger, Biometrika., 1909, vol. 6, pp. 236–301.

    Article  Google Scholar 

  • Ekman, S., Holothurien der Deutschen Südpolar-Expedition 1901–1903. Aus der Ostantarktis und von den Kerguelen, Deutsche Südpolar-Exped., 1901–1903., 1927. vol. 19 (Zool. 11), pp. 361–419.

    Google Scholar 

  • Engstrom, N.A., Development, natural history and interstitial habits of the apodous holothurian Chiridota rotifera (Pourtales. 1851. (Echinodermata: Holothuroidea), Brenesia, 1980, vol. 17, pp. 85–96.

    Google Scholar 

  • Erber, W., Zum Nachweis des Axialkomplexes bei Holothurien (Echinodermata), Zool. Scr., 1983, vol. 12, no. 4, pp. 305–313.

    Article  Google Scholar 

  • Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., The morphology of the axial complex and associated structures in Asterozoa (Asteroidea, Echinoidea, Ophiuroidea), Russ. J. Mar. Biol., 2014, vol. 40, no. 3, pp. 153–164.

    Article  Google Scholar 

  • Fedotov, D.M., Zur Morphologie des axialen Organkomplexes der Echinodermen, Z. Wiss. Zool., 1924, vol. 73, no. 2, pp. 209–304.

    Google Scholar 

  • Fedotov, D.M., Phylum Echinodermata, in Rukovodstvo po zoologii: Bespozvonochnye (Treatise on Zoology: Invertebrates), Moscow: Sovet. Nauka, 1951. vol. 3, part 2, pp. 460–591.

    Google Scholar 

  • Freire, C.A.O. and Grohmann, P.A., Leptosynapta brasiliensis: A new species of synaptid holothurian (Echinodermata) from a sandy beach in southeastern Brazil, Rev. Brasil. Zool., 1989, vol. 6, no. 4, pp. 719–723.

    Article  Google Scholar 

  • Gordon, I., The development of the calcareous test of Echinus miliaris, Phil. Trans. R. Soc. B., 1926, vol. 214, pp. 259–312.

    Article  Google Scholar 

  • Gould, S.J., Ontogeny and Phylogeny, Cambridge–Massachusetts–London: Belknap Press of Harvard Univ. Press, 1977.

    Google Scholar 

  • Hansen, B., Holothurioidea from depth exceeding 6000 meter, Galathea Rep., 1956, vol. 2, pp. 33–54.

    Google Scholar 

  • Hendler, G., Miller, J.E., Pawson, D.L., and Kier, P.M., Sea Stars, Sea Urchins, and Allies Echinoderms of Florida and the Caribbean, Washington–London: Smithsonian Inst. Press, 1995.

    Google Scholar 

  • Hyman, L.H., The Invertebrates, vol. 4: Echinodermata, New York–Toronto–London: McGraw Hill Book Com., 1955.

    Google Scholar 

  • Ivanova-Kazas, O.M., Sravnitel’naya ehmbriologiya bespozvonochnykh. Iglokozhie i polukhordovye (Comparative Embryology of Invertebrates: Echinoderms and Hemichordates), Moscow: Nauka, 1978.

    Google Scholar 

  • Janies, D., Phylogenetic relationships of extant echinoderm classes, Can. J. Zool., 2001, vol. 79, no. 7, pp. 1232–1250.

    Article  Google Scholar 

  • Levin, V.C., New data on a sea cucumber Scoliodotella lindbergi (Apoda, Chiridotidae), Zool. Zh., 1982, vol. 61, no. 12, pp. 1916–1920.

    Google Scholar 

  • Levin, V.S. and Gudimova E.N., Taxonomic interrelations of the holothurians Cucumaria frondosa and C. japonica (Dendrochirotida, Cucumariidae), Zool. Zh., 1997, vol. 76, no. 5, pp. 575–584.

    Google Scholar 

  • Littlewood, D.T.J., Echinoderm class relationships revisted, in Echinoderm Research 1995: Proceedings of the Fourth European Echinoderms Colloquium, London, UK, April 10–13, 1995, Emson, R., Smith, A., and Campbell, A., Eds., Rotterdam–Brookfield: A.A. Balkema, 1995, pp. 19–28.

    Google Scholar 

  • Littlewood, D.T.J., Smith, A.B., Clough, K.A., and Emson, R.H., The interrelationships of the echinoderm classes: Morphological and molecular evidence, Biol. J. Linn. Soc. London., 1997, vol. 61, no. 3, pp. 409–438.

    Article  Google Scholar 

  • Littlewood, D.T.J., Smith, A.B., Clough, K.A., and Emson, R.H., Five classes of echinoderms and one school of thought, in Echinoderms: San Francisco: Proceedings of the Ninth International Echinoderm Conference, San Francisco, California, USA, August 5–9, 1996. Mooi, R. and Telford, M., Eds., Rotterdam–Brookfield: A.A. Balkema, 1998, pp. 47–50.

    Google Scholar 

  • Ludwig, H., Holothurien, in Ergebnisse der Hamburger Magalhaensischen Sammelreise, 1898.

    Google Scholar 

  • McBride, E.W. Echinodermata, in The Cambrian Natural History, Harmer, S.F. and Shipley, A.E., Eds., London: MacMillan and Co, 1906, vol. 1, pp. 425–623.

    Google Scholar 

  • MacBride, E.W., Invertebrata, in Text-book of Embryology, Heape, W., Ed., London: Macmillan and Co. Lim., 1914. vol. 1.

  • Malakhov, V.V. and Cherkasova, I.V., The Embryonic and Early Larval Development of Stichopus japonicus var. armatus (Aspidochirota, Stichopodidae), Zool. Zh., 1991, vol. 70, no. 4, pp. 55–67.

    Google Scholar 

  • Malakhov, V.V. and Cherkasova, I.V., Metamorphosis of the sea cucumber Stichopus japonicus (Aspidochirota, Stichopodidae), Zool. Zh., 1992, vol. 71, no. 9, pp. 11–21.

    Google Scholar 

  • Martynov, A.V., Ontogeneticheskaya sistematika i novaya model’ evolyutsii Bilateria (Ontogenetic Systematics and a New Model of Bilateria Evolution), Moscow: KMK, 2011.

    Google Scholar 

  • Mashanov, V.S., Zueva, O.R., Heinzeller, Th., Aschauer, B., and Dolmatov, I.Yu., Developmental origin of the adult nervous system in a holothurian: An attempt to unravel the enigma of neurogenesis in echinoderms, Evol. Dev., 2007, vol. 9, no. 3, pp. 244–256.

    Article  Google Scholar 

  • Matveev, BC, The problem of heterochronies, ie., asynchronism in the developmental processes in light of the Darwin’s theory, Zh. Obshch. Biol., 1959, vol. 20, no. 5, pp. 359–369.

    Google Scholar 

  • McKinney, M.L., Ed., Heterochrony in Evolution: A Multidisciplinary Approach, New York–London: Plenum Press., 1988.

  • McKinney, M.L. and McNamara, K.J., Heterochrony: The Evolution of Ontogeny., New York–London: Plenum Press, 1991.

    Book  Google Scholar 

  • McNamara, K.J., A guide to the nomenclature of heterochrony, J. Paleontol., 1986, vol. 60, no. 1, pp. 4–13.

    Google Scholar 

  • McNamara, K.J., Shapes of Time: The Evolution of Growth and Development, Baltimore–London: Johns Hopkins Univ. Press, 1997.

    Google Scholar 

  • McNamara, K.J. and McKinney, M.L., Heterochrony, disparity, and macroevolution, Paleobiology., 2005. vol. 31, suppl. 2, pp. 17–26.

    Article  Google Scholar 

  • Menker, D. Lebenszyklus, Jugendentwicklung und Geschlechtsorgane von Rhabdomolgus ruber (Holothuroidea: Apoda), Mar. Biol., 1970, vol. 6, no. 2, pp. 167–186.

    Article  Google Scholar 

  • Merker, S., Gruhl, A., and Stach, Th., Comparative anatomy of the heart–glomerulus complex of Cephalodiscus gracilis (Pterobranchia): Structure, function, and phylogenetic implications, Zoomorphology., 2014, vol. 133, pp. 83–98.

    Article  Google Scholar 

  • Mooi, R. and David, B., Skeletal homologies of echinoderms, Paleontol. Soc. Pap., 1997, vol. 3, pp. 305–335.

    Google Scholar 

  • Mooi, R. and David, B., Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes, Ann. Rev. Ecol. Syst., 2008, vol. 39, pp. 43–62.

    Article  Google Scholar 

  • Mooi, R., David, B., and Wray, G.A., Arrays in rays: Terminal addition in echinoderms and its correlation with gene expression, Evol. Dev., 2005, vol. 7, no. 6, pp. 542–555.

    Article  Google Scholar 

  • Mortensen, Th., Studies in the development of crinoids, Pap. Dept. Mar. Biol. Carnegie Inst. Washington., 1920, vol. 16, pp. 1–94.

    Google Scholar 

  • Murakami, S., On the development of the calcareous plates in an ophiurid larva, Ophiopluteus serratus, Annot. Zool. Jap., 1937, vol. 16, pp. 135–147

    Google Scholar 

  • Naidenko, V.P. and Levin, V.S., Rearing of the commercial sea cucumber Cucumaria japonica in the laboratory, Biol. Morya., 1983, no. 4, pp. 61–65.

    Google Scholar 

  • Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, 3rd ed., Oxford: Oxford Univ. Press, 2012.

    Google Scholar 

  • Oguro, Ch., Notes on the morphology of an apodous holothurian, Scoliodotella uchidai, Publ. Akkeshi. Mar. Biol. Stat., 1965, no. 15, pp. 1–8.

    Google Scholar 

  • Ohshima, H., Report on the holothurians collected by the United States Fisheries Steamer “Albatross” in the northwestern Pacific during the summer of 1906, Proc. US Nat. Mus., 1915, vol. 48, pp. 213–291.

    Article  Google Scholar 

  • O’Loughlin, P.M., Mackenzie, M., and VandenSpiegel, D., New sea cucumber species from the seamounts on the southwest Indian Ocean Ridge (Echinodermata: Holothuroidea: Aspidochirotida, Elasipodida, Dendrochirotida), Mem. Mus. Victoria., 2013, vol. 70, pp. 37–50.

    Google Scholar 

  • O’Loughlin, P.M., Paulay, G., VandenSpiegel, D., and Samyn Y., New Holothuria species from Australia (Echinodermata: Holothuroidea: Holothuriidae), with comments on the origin of deep and cool holothuriids, Mem. Mus. Victoria., 2007, vol. 64, pp. 35–52.

    Google Scholar 

  • O’Loughlin, P.M. and VandenSpiegel, D., A Revision of Antarctic and some Indo-Pacific apodid sea cucumbers (Echinodermata: Holothuroidea: Apodida), Mem. Mus. Victoria, 2010, vol. 67, pp. 61–95.

    Google Scholar 

  • O’Loughlin, P.M. and VandenSpiegel, D., Sea cucumbers collected by the Kermadec Biodiscovery Expedition 2011 (Echinodermata: Holothuroidea: Apodida and Dendrochirotida), Zootaxa., 2012, no. 3515, pp. 60–66.

    Google Scholar 

  • Panning, A., Über die Veränderlichkeit der Merkmale der Gattung Holothuria, Zool. Jahrb. Syst., 1935. vol. 67, no. 1/2, pp. 1–28.

    Google Scholar 

  • Panning, A., Die Trepangfischerei, Mitt. Hamb. Zool. Mus. Inst., 1944, vol. 49, pp. 2–76.

    Google Scholar 

  • Pawson, D.L., Second New Zealand Record of the holothurian giant larva Auricularia nudibranchiata Chun, N. Z. J. Mar. Freshwater Res., 1971, vol. 5, no. 2, pp. 381–387.

    Article  Google Scholar 

  • Pawson, D.L., Gage, J.D., Belyaev, G.M., Mironov, A.N., and Smirnov, A.V., The deep sea synaptid Protankyra brychia (Echinodermata: Holothuroidea) and its near-surface dwelling planktotrophic larva, Auricularia nudibranchiata, Sarsia., 2003, vol. 88, pp. 159–174.

    Article  Google Scholar 

  • Pearse, J.S. and Cameron, A., Echinodermata: Echinoidea, in Reproduction of Marine Invertebrates, Giese, A.C., Pearse, J.S., and Pearse, V.B., Eds., vol. 6: Echinoderms and Lophophorates, Pacific Grove, California: Boxwood Press, 1991, pp. 513–662.

    Google Scholar 

  • Raff, R.A. and Kaufman, T.C., Embryos, Genes, and Evolution: The Developmental–Genetic Basis of Evolutionary Changes, London–New York: Macmillan Publ. Co., Inc. Collier Macmillan Publ., 1983.

    Google Scholar 

  • Rao, G.C., On Psammothuria ganapatii n. gen. n. sp. an interstitial holothurian from the Beach Sand of Waltair Coast and its autecology, Proc. Ind. Acad. Sci. Sect. B., 1968, vol. 67, no. 5, pp. 201–206.

    Google Scholar 

  • Rao, G.C., Occurrence of some juvenile stages referable to the apodous holothurian Patinapta ooplax (Marenzeller) intertidal sand of Andaman Islands, Proc. Ind. Acad. Sci. Sect. B., 1973, vol. 77, no. 6, pp. 225–233.

    Google Scholar 

  • Rao, G.C., On a new interstitial species of Trochodota (Apodida, Holothuroidea) from Andamans, India, Curr. Sci., 1975, vol. 44, no. 14, pp. 508–509.

    Google Scholar 

  • Reich, M., How many species of fossil holothurians are there? in Echinoderms in a Changing World: Proceedings of the 13th International Echinoderm Conference, January 5–9, 2009. Johnson, C., Ed., London: Taylor and Francis Group, 2013, pp. 23–51.

    Google Scholar 

  • Rowe, F.W.E., A review of the family Holothuriidae (Holothuroidea: Aspidochirotida). Bull. Br. Mus. Nat. Hist., Zool. Ser., 1969, vol. 18, no. 4, pp. 117–170.

    Google Scholar 

  • Rozhnov, S.V., The morphological patterns in the formation and evolution of higher taxa of Echinodermata, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of Animal Biodiversity), Vorobyeva, E.I. and Striganova, B.R., Eds., Moscow: KMK, 2005, pp. 156–170.

    Google Scholar 

  • Rozhnov, S.V., The role of heterochrony in the establishment of body plan in higher echinoderm taxa, Biol. Bull., 2009, vol. 36, no. 2, pp. 117–127.

    Article  Google Scholar 

  • Runnström, S., Über die Entwicklung von Leptosynapta inhaerens (O. Fr. Müller), Bergens Mus. Årb. Naturvid. Rekke, 1927, vol. 1, pp. 1–80.

    Google Scholar 

  • Ruppert, E.E., Key characters uniting hemichordates and chordates: Homologies or homoplasies?, Can. J. Zool., 2005, vol. 83, pp. 8–23.

    Article  Google Scholar 

  • Salvini-Plawen, L., Zur Taxonomie und Ökologie mediterraner Holothuroidea–Apoda, Helgoländer Wiss. Meeresunters., 1972, vol. 23, pp. 459–466.

    Article  Google Scholar 

  • Samyn, Y., VandenSpiegel, D., and Massin, C., Taxonomie des holothuries des Comores, Abc Taxa., 2006, vol. 1, pp. 1–130.

    Google Scholar 

  • Selenka, E., Zur Entwickelung der Holothurien (Holothuria tubulosa und Cucumaria doliolum): Ein Beitrag zur Keimblättertheorie, Z. Wiss. Zool., 1876, vol. 27, no. 2, pp. 155–78.

    Google Scholar 

  • Semon, R., Beiträge zur Naturgeschichte der Synaptiden des Mittelmeers: 1. Mittheilung, Mitt. Zool. Stat. Neapel., 1887, vol. 7, pp. 272–300.

    Google Scholar 

  • Simpson, G.G., Principles of Animal Taxonomy, New York: Columbia Univ. Press, 1961.

    Google Scholar 

  • Smiley, S., Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its phylogenetic implication, Biol. Bull., 1986, vol. 171, no. 3, pp. 611–631.

    Article  Google Scholar 

  • Smiley, S., The phylogenetic relationships of holothurians: A cladistic analysis of the extant echinoderm classes, in Echinoderm Phylogeny and Evolutionary Biology, Paul, C.R.C. and Smith, A.B., Eds., Oxford: Clarendon Press, 1988, pp. 69–84.

    Google Scholar 

  • Smirnov, A.V. Chiridota laevis, in Ivanov, A.V., Polyansky, Yu.I., and Strelkov, A.A., Bol’shoi praktikum po zoologii bespozvonochnykh (Great Practical Training on Invertebrate Zoology), 3rd ed., Moscow: Vyssh. Shkola., 1985, vol. 3, pp. 348–356.

    Google Scholar 

  • Smirnov, A.V., On the classification of the apodid holothurians, in Echinoderms: San Francisco: Proceedings of the Ninth International Echinoderm Conference, San Francisco, California, USA, August 5–9, 1996. Mooi, R. and Telford, M., Eds., Rotterdam–Brookfield: A.A. Balkema, 1998, pp. 517–522.

    Google Scholar 

  • Smirnov, A.V., Structural features of the class Holothuroidea, its position in the system of the phylum Echinodermata and its origin, Tr. St. Peterb. Ob-va Estestvoispyt. Ser. 1., 2008. vol. 97, part 1, pp. 90–109.

    Google Scholar 

  • Smirnov, A.V., System of the class Holothuroidea, Paleontol. J., 2012, vol. 46, no. 8, pp. 793–832.

    Article  Google Scholar 

  • Smirnov, A.V., Sea cucumbers symmetry (Echinodermata: Holothiroidea), in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya (Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2013, pp. 204–231.

    Google Scholar 

  • Smirnov, A.V., Sea cucumbers symmetry (Echinodermata: Holothuroidea), Paleontol. J., 2014, vol. 48, no. 12, pp. 1215–1236.

    Article  Google Scholar 

  • Smirnov, S.V., Paedomorphosis as a mechanism of evolutionary transformation, in Sovremennaya evolyutsionnaya morfologiya (Modern Evolutionary Morphology), Vorobyeva, E.I. and Vronsky, A.A., Eds., Kiev: Naukova Dumka, 1991, pp. 88–103.

    Google Scholar 

  • Smith, A.B, Echinoid Palaeobiology, London: George Allen and Urwin, 1984a.

    Google Scholar 

  • Smith, A.B. Classification of the Echinodermata, Palaeontology, 1984b, vol. 27, part 3, pp. 431–459.

    Google Scholar 

  • Smith, A.B., Deuterostomes in a twist: The origins of a radical new body plan, Evol. Dev., 2008, vol. 10, no. 4, pp. 493–503.

    Article  Google Scholar 

  • Smith, A.B., Petersen, K.J., Wray, G., and Littlewood, D.T.J., From bilateral symmetry to pentaradiality: The phylogeny of hemichordates and echinoderms, in Assembling the Tree of Life, Cracraft, J. and Donoghue, M.J., Eds., New York: Oxford Univ. Press, 2004, pp. 365–383.

    Google Scholar 

  • Smith, A. B. and Swalla, B., Deciphering deuterostome phylogeny: Molecular, morphological and palaeontological perspectives, in Animal Evolution, Genomes, Fossils, and Trees, Littlewood, D.T.J. and Telford, M., Eds., Oxford: Oxford Univ. Press, 2009, pp. 80–92.

    Chapter  Google Scholar 

  • Stach, Th., Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies, Naturwissenschaften., 2013, vol. 100, pp. 1187–1191.

    Article  Google Scholar 

  • Sushkin, P.P., Whether or not the evolutionary process is reversible, in Obshchie voprosy evolyutsii (General Questions of Evolution), vol. 8: Novye idei v biologii (New Ideas in Biology), Vagner, V.A., Ed., Petrograd: Obrazovanie, 1915, pp. 1–39.

    Google Scholar 

  • Swalla, B.J., New insights into vertebrate origins, in Principles of Developmental Genetics, Moody S.A., Ed., Amsterdam–Boston: Elsevier, Acad. Press, 2007, pp. 114–128.

    Google Scholar 

  • Swala, B.J. and Smith, A.B., Deciphering deuterostome phylogeny: Molecular, morphological and palaeontological perspectives, Phyl. Trans. R. Soc. B., 2008, vol. 363, no. 1496, pp. 1557–1568.

    Article  Google Scholar 

  • Takhtajan, A., Evolutionary Trends in Flowering Plants, New York: Columbia Univ. Press, 1991.

    Google Scholar 

  • Thandar, A.S., New species and a new record of sea cucumbers from deep waters of the South African Temperate Region (Echinodermata: Holothuroidea), Zootaxa., 2009, no. 2013, pp. 30–42.

    Google Scholar 

  • Thandar, A.S. and Arumugam, P., On some rhopalodinid sea cucumbers in the collections of the Natural History Museum, UK(Echinodermata: Holothuroidea: Dactylochirotida), Zootaxa, 2011. no. 29823, pp. 49–58.

    Google Scholar 

  • Thomson, W., On the embryogeny of Antedon rosaceus, Linck (Comatula rosacea of Lamarck), Phil. Trans. R. Soc., 1865, vol. 155, pp. 513–544.

    Article  Google Scholar 

  • Woodland, W., Studies in spicule formation: IV. The scleroblastic development of the spicules in Cucumariidae, with a note relating to the plate-and-anchor spicules of Synapta inhaerens, Q. J. Micosc. Sci. N. Ser., 1906, vol. 49, no. 196, pp. 533–559.

    Google Scholar 

  • Woodland, W., Studies in spicule formation: V. The scleroblastic development of the spicules in Ophiuroidea and Echinoidea, and in the genera Antedon and Synapta, Q. J. Micosc. Sci. N. Ser., 1907, vol. 51, no. 201, pp. 31–43.

    Google Scholar 

  • Ziegler, A., Faber, C., and Bartolomaeus, Th., Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea), Frontiers in Zoology., 2009. vol. 6, no. 10, doi:10.1186/1742-9994-6-10, http://wwwfrontiersinzoologycom/content/6/1/10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V. Paedomorphosis and heterochrony in the origin and evolution of the class holothuroidea. Paleontol. J. 49, 1597–1615 (2015). https://doi.org/10.1134/S003103011514018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003103011514018X

Keywords

Navigation