Skip to main content
Log in

Heterochrony and heterotopy in the phylogeny of sea urchins

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The role of heterochrony is evident in ontogeny and phylogeny of irregular (exocyclic) sea urchins. After metamorphosis, a juvenile passes the stage of regular (endocyclic) sea urchin, in which the periproct is surrounded by plates of the apical system. A shift of the periproct in the area of the fifth interambulacrum occurs in extant taxa at early stages of postlarval development and is accompanied by the reduction of genital plate 5. In some ancient (Jurassic) adult irregular sea urchins, the endocyclic state of the apical system is retained for a long time and the derivative of the fifth genital plate is sometimes observed even in Early Cretaceous species. Considerable transformations in the structure of the lower test surface in members of the order Spatangoida are manifested in changes in the relative positions of plastron plates and ambulacral areas I and V, separation of sternal plates from the labrum, etc. The mechanism of these changes is connected with translocation or “sliding” of sutures of particular plates as a result of nonuniform growth and partial resorption. The study of evolutionary lineages of Cretaceous and Cenozoic sea urchins has shown that the evolution was connected with the directional changes in some morphological characters at late ontogenetic stages. The process was accompanied by either extension, peramorphosis (lineages of the genera Micraster, Infulaster–Hagenowia in the European Province), or the loss of these stages, paedomorphosis (Hemiaster (Bolbaster) lineage, Late Eocene–Middle Miocene of Australia). The phenomena of heterochrony and heterotopy in the development of peripetal, marginal, and lateroanal fascioles in the Late Cretaceous and Paleocene families Hemiasteridae, Schizasteridae, and Paleopneustidae are described. The heterotopy is also illustrated by the example of the development of additional genital pores on ocular plates II and IV of the Middle Jurassic species Pygomalus analis (Disasteroida); its apical system has five pores instead of four. In the Late Cretaceous species Guettaria roccardi (Holasteroida), ocular plates II and IV have two pores each; in the apical system, there are eight genital pores instead of four. In some members of the order Holectypoida, the place of lost genital plate 5 is occupied by a new plate sometimes pierced by a pore, but judging from crystallographic data, it is not homologous to other genital plates. The order Clypeasteroida is characterized by the development of very small pores in both ambulacral and interambulacral fields; they provide passage for numerous accessory tube feet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chesher, R.H., Evolution of the genus Meoma (Echinoida, Sphatangoida) and a description of a new species from Panama, Bull. Mar. Sci., 1970, vol. 20, pp. 731–761.

    Google Scholar 

  • David, B., Significance of architectural patterns in the deep-sea echinoids Pourtalesiidae, Proceedings of the Fifth International Echinoderm Conference, Galway., 1984, pp. 237–243.

    Google Scholar 

  • David, B., How to study evolution in echinoderms?, in Echinoderm Studies, Jangoux, M. and Lawrence, J.M., Eds., (Rotterdam) Brookfield: Balkema, 1993, pp. 1–80.

    Google Scholar 

  • Durham, J.W., Clypeasteroids, in Treatise on Invertebrate Paleontology: Part U, Echinodermata 3, 1966, vol. 2, pp. 450–491.

    Google Scholar 

  • Gale, A.S. and Smith, A.B., The palaeobiology of the Cretaceous irregular echinoids Infulaster–Hagenowia, Palaentology., 1985, vol. 25, pp. 11–42.

    Google Scholar 

  • Gordon, I., The development of the calcareous test of Echinocardium cordatum, Phil. Trans. Roy. Soc. London. B., 1926, vol. 215, pp. 253–313.

    Google Scholar 

  • Jesionek, W., Obserwacje nad morphologia Pygomalus analis (Agassiz) (Echinida, Disasteridae), Acta Palaeontol. Polon., 1956, vol. 1, no. 1, pp. 49–68.

    Google Scholar 

  • Jesionek-Szyman-ska, W., Remarks on the structure of the apical system of irregular echinoids, Acta Palaeontol. Polon., 1959, vol. 4, no. 3, pp. 339–352.

    Google Scholar 

  • Jesionek-Szyman-ska, W., Échinides irréguliers du Dogger de Pologne, Acta Palaeontol. Polon., 1963, vol. 8, no. 3, pp. 293–414.

    Google Scholar 

  • Jesionek-Szyman-ska, W., Irregular echinoids—an insufficiently known group, Lethaia., 1968, vol. 1, pp. 50–65.

    Article  Google Scholar 

  • Markov, A.V., Fascioles of sea urchins of the family Shizasteridae, Byull. Mosk. Obshch-va Ispyt. Prir. Otd. Geol., 1989. vol. 64, no. 5, p. 124.

    Google Scholar 

  • Markov, A.V., Morphology, systematics, and phylogeny of sea urchins of the family Schizasteridae, Tr. Paleontol. Inst. Ross. Akad. Nauk., 1994, vol. 258, pp. 1–93.

    Google Scholar 

  • Markov, A.V. and Kushlina, V.B., Postlarval development of some spatangoid sea urchins, Paleontol. Zh., 1990a, no. 2, pp. 60–68.

    Google Scholar 

  • Markov, A.V. and Kushlina, V.B., Quantitative aspects of age changes in some spatangoid sea urchins, Paleontol. Zh., 1990b, no. 4, pp. 49–56.

    Google Scholar 

  • Markov, A.V. and Solovjev, A.N., Sea urchins of the family Paleopneustidae (Echinoidea, Spatangoida): Morphology, system, phylogeny, Tr. Paleontol. Inst. Ross. Akad. Nauk., 2001, vol. 280, pp. 1–108.

    Google Scholar 

  • McNamara, K.J., Taxonomy, evolution, and functional morphology of southern Australian Tertiary hemiasterid echinoids, Palaentology., 1987. vol. 30, part 2, pp. 319–352.

    Google Scholar 

  • McNamara, K.J., The role of heterochrony in the evolution of spatangoid echinoids, Geobios, Mèm., spec., 1989, no. 12, pp. 283–295; Paleontology, vol. 30, part 2, pp. 319–352.

    Google Scholar 

  • Mortensen, Th., A Monograph of the Echinoidea, Copenhagen: Reitzel Publ., 1951. vol. 5, part 2.

  • Nichols, D., Changes in the chalk heart-urchin Micraster interpreted in relative to living forms, Philos. Trans. Roy Soc. London, B., 1959, vol. 242, pp. 347–437.

    Google Scholar 

  • Poslavskaya, N.A., On species and generic criteria in some Spatangoida, Byull. Mosk. Obshch-va Ispyt. Prir. Otd. Geol., 1958. vol. 33, no. pp. 159–160.

    Google Scholar 

  • Poslavskaya, N.A. and Moskvin, M.M., Echinodermata, in Atlas verkhnemelovoi fauny Severnogo Kavkaza i Kryma (Atlas of the Upper Cretaceous Fauna of the Northern Caucasus and Crimea), Moscow: Gostoptekhizdat, 1959, pp. 237–304.

    Google Scholar 

  • Poslavskaya, N.A. and Solovjev, A.N., Sea urchins: Order Spatangoida, Osnovy paleontologii. Iglokozhie, gemikhordovye, pogonofory i shchetinkochelyustnye (Fundamentals of Paleontology: Echinoderms, Hemichordates, Pogonophores, and Chaetognathans), Gekker, R.F., Ed., Moscow: Nauka, 1964, pp. 174–189.

  • Saucède, T., Mironov, A.N., Mooi, R., and David, B., The morphology, ontogeny, and inferred behavior of the deepsea echinoid Calymne relicta (Holasteroida), Zool. J. Linn. Soc., 2009. vol. 155, no. 144 (2), pp. 630–648.

    Article  Google Scholar 

  • Shmidt, O.M. and Solovjev, A.N., Sea urchins: Order Holectypoida, Osnovy palentologii. Iglokozhie, gemikhordovye, pogonofory i shchetinkochelyustnye (Fundamentals of Paleontology: Echinoderms, Hemichordates, Pogonophores, and Chaetognathans), Gekker, R.F., Ed., Moscow: Nauka, 1964, pp. 167–169.

  • Solovjev, A.N., Late Jurassic and Early Cretaceous disasterid sea urchins of the USSR, Tr. Paleontol. Inst. Akad. Nauk SSSR., 1971, vol. 131, pp. 1–124.

    Google Scholar 

  • Solovjev, A.N., Evolutionary lineages of some Cretaceous and Cenozoic genera of sea urchins and their interpretation, in Tezisy Dokladov XLIV sessii Paleontologicheskogo obshchestva (Reports of the XLIV Sessions of the Paleontological Society), St. Petersburg, 1998, pp. 94–95.

    Google Scholar 

  • Solovjev, A.N., Apical system of Jurassic irregular sea urchins, in Yurskaya sistema Rossii: problemy stratigrafii i paleogeografii. IV Vserossiiskoe soveshchanie. Nauchnye materialy (IV All-Russia Meeting on the Jurassic System of Russia: Problems of Stratigraphy and Paleogeography), St. Petersburg, 2011, pp. 205–207.

    Google Scholar 

  • Solovjev, A.N., Symmetry, asymmetry, and dissymmetry in sea urchins, in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya. Seriya “Geo-biologicheskie sistemy v proshlom (Geobiological Systems in the Past: Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2013, pp. 232–240.

    Google Scholar 

  • Solovjev, A.N. and Markov, A.V., Early stages of the evolution of irregular sea urchins, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Rearrangements and Evolution of the Biosphere), Barskov, I.S., Leonova, T.B., and Ponomarenko. A.G., Eds., Moscow, Paleontol. Inst. Ross. Akad. Nauk, 2004, vol. 6, pp. 77–86.

    Google Scholar 

  • Solovjev, A.N. and Markov, A.V., Trophic features of sea urchins at different stages of historical development of the class, in Evolyutsiya biosfery i bioraznoobrazie (Evolution of the Biosphere and Biodiversity), Moscow: KMK, 2006, pp. 316–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Solovjev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovjev, A.N. Heterochrony and heterotopy in the phylogeny of sea urchins. Paleontol. J. 49, 1582–1596 (2015). https://doi.org/10.1134/S0031030115140191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030115140191

Keywords

Navigation