Skip to main content
Log in

Echinoid skeleton

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The skeleton of echinoids is internal and mesodermal, as in other echinoderms. Skeletal elements, including spines, are covered with single-layer epidermis and the skeleton is functionally external relative to the main body of the animal. It is composed of calcite with a high content of magnesium. Skeleton parts vary in the amount of magnesium, depending on the sea water temperature. However, at the relatively low taxonomic level, the major factor in this respect is genetic control. Representatives of different taxonomic groups living in the same temperature conditions differ considerably in the content of magnesium. Spongy or fenestrate microstructure called stereome is rather specific. Other type of microstructure is only characteristic of some elements of the Aristotle’s lantern. Cristallographically, each element is a single calcite crystal with definite orientation of optical axes. The formation of larval skeleton begins at the late blastula stage. The larval skeleton is rather specific and sometimes varies in different species of the same genus. The development of definitive skeleton is either connected with elements of larval skeleton or it is formed independently in the amniotic cavity on the left side of the larva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clarke, F.W. and Wheeler, W.C., The inorganic constituents of marine invertebrates, Prof. Pap. US Geol. Surv., 1922, no. 124, pp. 1–62.

    Google Scholar 

  • Deflandre-Rigaud, M., Vestiges microscopiques de larves d’Echinodermes de l’Oxfordien de Villers-sur-Mer, CR Acad. Sci. Paris, 1946, vol. 222, pp. 908–910.

    Google Scholar 

  • Dorofeeva, L.A. and Solovjev, A.N., On magnesian skeleton of sea urchins, in Problemy filogenii i sistematiki iglokozhikh. Tez. dokl. 4 vses. simp. po iglokozhim (4th All-Union Echinoderm Symposium on the Problems of the Phylogeny and Taxonomy of Echinoderms), Tallinn, 1987, pp. 26–29.

    Google Scholar 

  • Gordon, I., The development of the calcareous test of Echinus miliaris, Phil. Trans. Roy. Soc. London, Ser. B, 1926a, vol. 214, pp. 259–312.

    Article  Google Scholar 

  • Gordon, I., On the development of the calcareous test of Echinocardium cordatum, Phil. Trans. Roy. Soc. London, Ser. B, 1926b, vol. 215, pp. 255–313.

    Article  Google Scholar 

  • Gordon, I., Skeletal development in Arbacia, Echinarachinus and Leptasterias, Phil. Trans. Roy. Soc. London. Ser. B, 1928, vol. 217, pp. 289–334.

    Article  Google Scholar 

  • Jensen, M., Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis, Vid. Meddr. Dansk Naurh. Foren., 1981, vol. 143, pp. 7–99.

    Google Scholar 

  • Kryuchkova, G.A., Morphology of larval and definitive skeleton of sea urchins of the Sea of Japan, Candidate’s Dissertation on Biology, Vladivostok: Inst. Biol. Mor. Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1983.

    Google Scholar 

  • Kryuchkova, G.A. and Solovjev, A.N., On the larval stage of sea urchins, Paleontol. Zh., 1975, no. 4, pp. 63–71.

    Google Scholar 

  • Mortensen, Th., Studies of the Development and Larval Forms of Echinoderms, Copenhagen: GEC Gad., 1921.

    Book  Google Scholar 

  • Mortensen, Th., Handbook of the Echinoderms of the British Isles, Hymphrey Milford: Oxford Univ. Press, 1927.

    Google Scholar 

  • Mortensen, Th., Contribution to the study of the development and larval forms of echinoderms, Mem. Acad. Sci. Lett. Danemark. Sec. Sci. Ser. 9, 1931, vol. 4, no. 1, pp. 1–39; 1937, vol. 7, no. 1, pp. 1–65; 1938, vol. 7, no. 3, pp. 1–59.

    Google Scholar 

  • Raup, D.M., Crystallography of echinoid calcite, J. Geol., 1959, vol. 67, no. 6, pp. 661–674.

    Article  Google Scholar 

  • Raup, D.M., Ontogenetic variation in the crystallography of echinoid calcite, J. Paleontol., 1960, vol. 34, no. 5, pp. 1041–1050.

    Google Scholar 

  • Raup, D.M., The phylogeny of calcite crystallography in echinoids, J. Paleontol., 1962a, vol. 36, no. 4, pp. 793–810.

    Google Scholar 

  • Raup, D.M., Crystallographic data in echinoderm classification, Syst. Zool., 1962b, vol. 11, no. 3, pp. 97–108.

    Article  Google Scholar 

  • Raup, D.M., Crystal orientations in the echinoid apical system, J. Paleontol., 1965, vol. 39, no. 5, pp. 934–951.

    Google Scholar 

  • Raup, D.M., The Endoskeleton, in Physiology of Echinodermata, Boolootian, R.A., Ed., Los Angeles-California: Intersci. Publ., 1966, pp. 379–395.

    Google Scholar 

  • Smith, A., Stereom microstructure of the echinoid test, Spec. Pap. Palaeontol., 1980, no. 25, pp. 1–81.

    Google Scholar 

  • Smith, A., Echinoid Palaeobiology. Department of Palaentology, London: Brit. Mus. Nat. Hist., 1984.

    Google Scholar 

  • Weber, J.N., Temperature dependence of magnesium in echinoid and asteroid skeletal calcite; a reinterpretation of its significance, J. Geol., 1973, vol. 81, no. 5, pp. 543–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Solovjev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovjev, A.N. Echinoid skeleton. Paleontol. J. 48, 1540–1551 (2014). https://doi.org/10.1134/S0031030114140135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030114140135

Keywords

Navigation