Skip to main content
Log in

Ontogeny as a whole: Some developmental trends

  • Published:
Paleontological Journal Aims and scope Submit manuscript

“And if I came to the defense of the old-fashioned supramolecular biology, it is because nobody else has taken the trouble to do it.” (Selie, 1972)

Abstract

In many animal groups, rudimentary organs of adult organisms appear at early stages of egg cleavage, when there is no trace of morphological differentiation. More than half a century ago, I. I. Schmalhausen developed a profound concept of integrity of the organism in the course of development. He emphasized that mutual adaptation of organs is based on correlations, involving the so-called nonhereditary modifications, which are transformed into hereditary traits by means of natural selection. There are many exceptions to the biogenetic law, as it was understood by de Beer. In particular, embryo of the pouched tree frog Gastrotheca shows a retarded development and is spread over the yolk surface. As a result, it becomes similar somewhat to embryos of amniotes. After the metamorphosis, Xenopus returns to ammonotelism. The integrity of ontogeny at the molecular level has much in common with the neutrality theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alberch, “Ontogenesis and Morphological Diversification,” Am. Zool. 20, 653–667 (1980).

    Google Scholar 

  2. G. de Beer, Embryos and Ancestors (Clarendon Press, Oxford, 1958).

    Google Scholar 

  3. L. Bertalanffy, Kritisch Theorie der Formbildung (Gebrüder Borntraeger, Berlin, 1928).

    Google Scholar 

  4. P. P. Cohen and C. W. Brown, “Evolution of Nitrogen Metabolism,” in Proceedings of the 5th International Congress on Evolutionary Biochemistry. (Macmillan Publ., New York, 1963), pp. 129–138.

    Google Scholar 

  5. E. M. Del Pino and B. P. Elinson, “A Novel Development Pattern for Frogs Gastrulation Procudes an Embryonic Disk,” Nature 305, 589–591 (1980).

    Google Scholar 

  6. H. Driesch, Analytisch Theorie der organischen Entwicklung (Engelmann, Leipzig, 1894).

    Google Scholar 

  7. H. Driesch, Philosophie des Organischen (Quelle and Meyer, Leipzig, 1928).

    Google Scholar 

  8. M. Eigen, Self-organization of Matter and the Evolution of Biological Macromolecules (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  9. C. Gans, Biomechanics: An Approach to Vertebrate Biology (Ann Arbor, 1980).

  10. W. Garstang, “The Theorie of Recapitulation. A Critical Restatement of the Biogenetic Law,” J. Linn. Soc. London. Zool. 35, 81–102 (1922).

    Article  Google Scholar 

  11. A. G. Gurvich, The Theory of Biological Field (Sov. Nauka, Moscow, 1944) [in Russian].

    Google Scholar 

  12. E. Haeckel, Generelle Morphologie der Organismen: allgemeine Grundzüge der Organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Decendenz-Theorie (Georg Remer, Berlin, 1866), Vols. 1 and 2.

    Google Scholar 

  13. W. His, “On the Principles of Animal Morphology,” Proc. R. Soc. Edinburgh 15, 287–298 (1888).

    Google Scholar 

  14. Mae-Wan Ho, P. T. Saunders, and S. W. Fox, “A New Paradigm for Evolution,” New Sci. (27 February), pp. 41–43 (1986).

  15. N. N. Iordansky, “Skull Kinesis of Urodela,” Zool. Zh. 61, 55–66 (1982).

    Google Scholar 

  16. N. N. Iordansky, Evolution of Complex Adaptations: The Jaw Apparatus of Amphibians and Reptiles (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  17. L. I. Korochkin, Introduction in Developmental Genetics (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  18. H. Kuhn, “Self-organization of Molecular Systems and the Evolution of the Genetic Apparatus,” Angew. Chem. 11, 798–830 (1972).

    Article  Google Scholar 

  19. E. Lekavicius, Elements of the General Theory of Adaptation (Moksdas, Vilnus, 1986) [in Russian]. 273 with.

    Google Scholar 

  20. J. Levinton, Genetics, Paleontology, and Macroevolution (Cambridge Univ. Press, Cambridge-New York, 1988).

    Google Scholar 

  21. A. A. Lyubishchev, “On the Postulates of the Modern Selectogenesis,” in Problem of Evolution (Nauka, Novosibirsk, 1973), Vol. 3, pp. 31–56 [in Russian].

    Google Scholar 

  22. H. Mangold and F. Seidel, “Homoplastische und heteroplastische Verschmelzung ganzer Tritonskeime,” Roux Arch. 111, 494–665 (1927).

    Google Scholar 

  23. A. Meyer, Logik der Morphologie im Rahmem eine Logik der gesamten Biologie (Springer, Berlin, 1926).

    Google Scholar 

  24. A. Naef, Idealistische Morphologie und Phylogenetik (Jena, 1919).

  25. G. M. Nash and G. Frankhauser, “Changes in the Pattern of Nitrogen Excretion during the Life Cycle of the Newt,” Science 130, 714–716 (1959).

    Article  Google Scholar 

  26. A. I. Oparin, Life, Its Nature, Origin, and Development (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  27. G. A. Parker, “Selfish Genes, Evolutionary Games and the Adaptiveness of Behaviour,” Nature 274, 849–855 (1978).

    Article  Google Scholar 

  28. R. A. Raff and T. C. Kauffman, Embryos, Genes and Evolution: The Development Genetic Basis of Evolutionary Change (Macmillan, New York, 1983).

    Google Scholar 

  29. S. N. Rodin, Idea of Coevolution (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  30. I. I. Schmalhausen, Organism As a Whole in Individual and Historical Development (Akad. Nauk SSSR, Moscow, 1942) [in Russian].

    Google Scholar 

  31. I. I. Schmalhausen, Problems of Darwinism (Nauka, Leningrad, 1969) [in Russian].

    Google Scholar 

  32. G. Selie, At the Level of the Whole Organism (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  33. M. A. Shishkin, “Ontogeny and Lessons of Evolutionism,” Ontogenez 37(3), 179–198 (2006).

    Google Scholar 

  34. H. Spemann, Embryonic Development and Induction (Yale Univ. Press, New Haven, 1938).

    Google Scholar 

  35. H. M. Spemann and H. Mangold, “Uber Induktion von Embryonanllagen durch Implantation artfimder Organisatoren,” Roux Arch. 100, 599–638 (1924).

    Google Scholar 

  36. E. E. Underhay and E. Baldwin, “Nitrogen Excretion in the Tadpoles of Xenopus laevis Daudin,” Biochem. J. 61, 544–547 (1955).

    Google Scholar 

  37. C. H. Waddington, Principles of Development and Differentiation (Macmillan Publ., New York, 1966).

    Google Scholar 

  38. G. A. Zavarzin, “The Non-Darwinian Domain of Evolution,” Vestn. Ross. Akad. Nauk 70(5), 403–411 (2000) [Her. Russ. Acad. Sci. 70 (3), 252–259 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Tatarinov.

Additional information

Original Russian Text © L.P. Tatarinov, 2011, published in Paleontologicheskii Zhurnal, 2011, No. 1, pp. 3–6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatarinov, L.P. Ontogeny as a whole: Some developmental trends. Paleontol. J. 45, 1–4 (2011). https://doi.org/10.1134/S0031030111010163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030111010163

Keywords

Navigation