Skip to main content
Log in

Relationship between the alpha diversity of communities and the appearance rates of new genera in the evolution of phanerozoic marine biota

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The influence of the alpha diversity of communities on the appearance rates of new species may be either positive (due to coevolution and niche construction) or negative (due to community saturation). The development of global paleontological databases allows the extrapolation of the analysis of these effects to past geological epochs. To assess the effect of alpha diversity on the rates of generic formation in the evolution of the Phanerozoic marine biota, the correlation of the parameters D (mean generic diversity of paleontological collections containing representatives of a large taxon) and B (relative rate of the appearance of new genera in the given large taxon) was analyzed. The majority of large taxa, and the Phanerozoic biota in general, characteristically show predominance of periods of positive correlation (synchronous changes) of B and D, separated by shorter periods of negative correlation (opposite phase changes). These can be interpreted as periods of positive and negative influence of alpha diversity on diversification, although positive correlation can be generated by other factors, including taphonomic ones. Apparently, in the evolution of the Phanerozoic marine biota, the coevolution and “niche construction” played a more significant role than the effect of “saturation” of communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alroy, C. R. Marshall, R. K. Bambach, et al., “Effects of Sampling Standardization on Estimates of Phanerozoic Marine Diversification,” Proc. Nat. Acad. Sci. USA 98, 6261–6266 (2001).

    Article  Google Scholar 

  2. J. Alroy, M. Aberhan, D. J. Bottjer, et al., “Phanerozoic Trends in the Global Diversity of Marine Invertebrates,” Science 321(5885), 97–100 (2008).

    Article  Google Scholar 

  3. R. K. Bambach, “Species Richness in Marine Benthic Habitats through the Phanerozoic,” Paleobiology 3, 152–167 (1977).

    Google Scholar 

  4. U. Bastolla, M. A. Fortuna, A. Pascual-Garca, et al., “The Architecture of Mutualistic Networks Minimizes Competition and Increases Biodiversity,” Nature 458(7241), 1018–1020 (2009).

    Article  Google Scholar 

  5. D. R. Bellwood, “Origins and Escalation of Herbivory in Fishes: A Functional Perspective,” Paleobiology 29(1), 71–83 (2003).

    Article  Google Scholar 

  6. M. Benton, “The History of the Biosphere: Equilibrium and Non-Equilibrium Models of Global Diversity,” Trends Ecol. Evol. 2(6), 153–156 (1987).

    Article  Google Scholar 

  7. M. J. Benton and B. C. Emerson, “How Did Life Become So Diverse? The Dynamics of Diversification According to the Fossil Record and Molecular Phylogenetics,” Palaeontol. 50, 23–40 (2007).

    Article  Google Scholar 

  8. E. N. Bukvareva and G. M. Aleshchenko, “Principle of Optimum Diversity of Biosystems,” Usp. Sovr. Biol. 125(4), 337–348 (2005).

    Google Scholar 

  9. A. M. Bush and R. K. Bambach, “Did Alpha Diversity Increase During the Phanerozoic? Lifting the Veils of Taphonomic, Latitudinal, and Environmental Biases,” J. Geol. 112, 625–642 (2004).

    Article  Google Scholar 

  10. A. Clarke and J. A. Crame, “The Importance of Historical Processes in Global Patterns of Diversity,” in Macroecology: Concepts and Consequences, Ed. by T. M. Blackburn and K. J. Gaston (Blackwell, Oxford, 2003), pp. 130–151.

    Google Scholar 

  11. M. D. Crisp, M. T. K. Arroyo, L. G. Cook, et al., “Phylogenetic Biome Conservatism on a Global Scale,” Nature 458(7239), 754–756 (2009).

    Article  Google Scholar 

  12. C. S. Elton, The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).

    Google Scholar 

  13. B. C. Emerson and N. Kolm, “Species Diversity Can Drive Speciation,” Nature 434(7036), 1015–1017 (2005).

    Article  Google Scholar 

  14. D. H. Erwin, “Macroevolution: Seeds of Diversity,” Science 308(5729), 1752–1753 (2005).

    Article  Google Scholar 

  15. A. A. Forbes, T. H. Q. Powell, L. L. Stelinski, et al., “Sequential Sympatric Speciation across Trophic Levels,” Science 323(5915), 776–779 (2009).

    Article  Google Scholar 

  16. G. F. Fussmann, M. Loreau, and P. A. Abrams, “Eco-Evolutionary Dynamics of Communities and Ecosystems,” Funct. Ecol. 21(3), 465–477 (2007).

    Article  Google Scholar 

  17. P. S. Giller, Community Structure and the Niche (Chapman Hall, London, 1984).

    Google Scholar 

  18. F. M. Gradstein, J. G. Ogg, A. G. Smith, et al., A Geologic Time Scale 2004 (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  19. P. R. Grant and B. R. Grant, How and Why Species Multiply: the Radiation of Darwin’s Finches (Princeton Univ. Press, Princeton, 2008).

    Google Scholar 

  20. L. J. Harmon, B. Matthews, S. Des Roches., et al., “Evolutionary Diversification in Stickleback Affects Ecosystem Functioning,” Nature 458(7242), 1167–1170 (2009).

    Article  Google Scholar 

  21. N. N. Kalandadze and A. S. Rautian, “Jurassic Ecological Crisis in the Community of Terrestrial Tetrapods and the Heuristic Model of Conjugate Evolution of the Community and Biota,” in Problems of Preanthropogenic Evolution of the Biosphere (Nauka, Moscow, 1993), pp. 60–95 [in Russian].

    Google Scholar 

  22. V. A. Krassilov, Unsolved Problems of the Evolutionary Theory (Dal.-Vost. Nauchn. Tsentr Akad. Nauk SSSR, Vladivostok, 1986) [in Russian].

    Google Scholar 

  23. A. Lane and M. J. Benton, “Taxonomic Level As a Determinant of the Shape of the Phanerozoic Marine Biodiversity Curve,” Am. Natur. 162(3), 265–276 (2003).

    Article  Google Scholar 

  24. M. Loreau, “Are Communities Saturated? On the Relationship Between α, β and γ Diversity,” Ecol. Let. 3, 73–76 (2000).

    Article  Google Scholar 

  25. M. Loreau, S. Naeem, P. Inchausti, et al., “Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges,” Science 294(5543), 804–808 (2001).

    Article  Google Scholar 

  26. J. B. Losos, Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. California Press, Berkeley, 2009).

    Google Scholar 

  27. R. H. MacArthur and E. O. Wilson. The Theory of Island Biogeography (Princeton Univ. Press, Princeton, 1967).

    Google Scholar 

  28. A. V. Markov, “New Approach to Diversity Dynamics Modeling in the Phanerozoic Marine Biota,” Zh. Obshch. Biol. 62(6), 460–471 (2001).

    Google Scholar 

  29. A. V. Markov, “Alpha Diversity of Phanerozoic Marine Communities Positively Correlates with Longevity of Genera,” Paleobiology 35(2), 231–250 (2009).

    Article  Google Scholar 

  30. A. V. Markov and A. V. Korotayev, “Phanerozoic Marine Biodiversity Follows a Hyperbolic Trend,” Palaeoworld 16, 311–318 (2007).

    Article  Google Scholar 

  31. A. V. Markov and A. V. Korotayev, “Hyperbolic Growth of Diversity in Marine and Continental Biotas of the Phanerozoic and Community Evolution,” Zh. Obshch. Biol., No. 3, 175–194 (2008).

  32. P. M. Novack-Gottshall, “Using a Theoretical Ecospace to Quantify the Ecological Diversity of Paleozoic and Modern Marine Biotas,” Paleobiology 33(2), 273–294 (2007).

    Article  Google Scholar 

  33. F. J. Odling-Smee, K. N. Laland, and M. W. Feldman, Niche Construction: The Neglected Process in Evolution (Princeton Univ. Press, Princeton, 2003).

    Google Scholar 

  34. T. Oji, C. Ogaya, and T. Sato, “Increase of Shell-Crushing Predation Recorded in Fossil Shell Fragmentation,” Paleobiology 29(4), 520–526 (2003).

    Article  Google Scholar 

  35. M. E. Patzkowsky and S. M. Holland, “Lack of Community Saturation at the Beginning of the Paleozoic Plateau: The Dominance of Regional over Local Processes,” Paleobiology 29(4), 545–560 (2003).

    Article  Google Scholar 

  36. M. E. Patzkowsky and S. M. Holland, “Diversity Partitioning of a Late Ordovician Marine Biotic Invasion: Controls on Diversity in Regional Ecosystems,” Paleobiology 33(2), 295–309 (2007).

    Article  Google Scholar 

  37. M. G. Powell and M. Kowalewski, “Increase in Evenness and Sampled Alpha Diversity through the Phanerozoic: Comparison of Early Paleozoic and Cenozoic Marine Fossil Assemblages,” Geology 30(4), 331–334 (2002).

    Article  Google Scholar 

  38. A. P. Rasnitsyn, “Evolutionary Process and Methodology of the Systematics,” Tr. Russ. Entomol. O-va 73, 1–108 (2002).

    Google Scholar 

  39. R. E. Ricklefs, The Economy of the Nature: A Textbook in Basic Ecology (Chiron, Portland, 1976; Mir, Moscow, 1979).

    Google Scholar 

  40. S. V. Rozhnov, “Morphogenesis and Evolution of Crinoids and Other Pelmatozoan Echinoderms in the Early Paleozoic,” Paleontol. J. 36(Suppl. 6), 525–S674 (2002).

    Google Scholar 

  41. D. Schluter, The Ecology of Adaptive Radiation (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  42. O. Seehausen, Y. Terai, I. S. Magalhaes, et al., “Speciation through Sensory Drive in Cichlid Fish,” Nature 455(7213), 620–626 (2008).

    Article  Google Scholar 

  43. J. J. Sepkoski, “A Kinetic Model of Phanerozoic Taxonomic Diversity: I. Analysis of Marine Orders,” Paleobiology 4(3), 223–251 (1978).

    Google Scholar 

  44. J. J. Sepkoski, “Alpha, Beta or Gamma: Where Does All the Diversity Go?,” Paleobiology 14(3), 221–234 (1988).

    Google Scholar 

  45. J. J. Sepkoski, “Population Biology Models in Macroevolution,” Analytical Paleobiology: Short Courses in Paleontology, Ed. by N. L. Gilinsky and P. W. Signor (Paleontol. Soc., Knoxville, 1991), No. 4, pp. 136–156.

    Google Scholar 

  46. I. A. Shilov, Ecology (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  47. B. Shorrocks, The Biology of African Savannahs (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  48. Th. J. Stohlgren, D. Binkley, G. W. Chong, et al., “Exotic Plant Species Invade Hot Spots of Native Plant Diversity,” Ecol. Monogr. 69(1), 25–46 (1999).

    Article  Google Scholar 

  49. Th. J. Stohlgren, D. T. Barnett, C. S. Jarnevich, et al., “The Myth of Plant Species Saturation,” Ecol. Let. 11, 313–326 (2008).

    Article  Google Scholar 

  50. J. N. Thompson, “Rapid Evolution As an Ecological Process,” Trends Ecol. Evol. 13, 329–332 (1998).

    Article  Google Scholar 

  51. G. Vermeij, “Anatomy of an Invasion: The Trans-Arctic Interchange,” Paleobiology 17(3), 281–307 (1991).

    Google Scholar 

  52. D. Western and A. K. Behrensmeyer, “Bone Assemblages Track Animal Community Structure over 40 Years in an African Savanna Ecosystem,” Science 324(5930), 1061–1064 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markov.

Additional information

Original Russian Text © A.V. Markov, A.A. Bondarev, M.V. Vinarsky, 2010, published in Paleontologicheskii Zhurnal, 2010, No. 5, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.V., Bondarev, A.A. & Vinarsky, M.V. Relationship between the alpha diversity of communities and the appearance rates of new genera in the evolution of phanerozoic marine biota. Paleontol. J. 44, 477–488 (2010). https://doi.org/10.1134/S0031030110050011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030110050011

Key words

Navigation