Skip to main content
Log in

Approaches to the resolution of contradictions between phylogenetic reconstructions based on morphofunctional and genetic data

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Essential differences between genetic and morphofunctional characteristics as sources of information about evolutionary development are discussed using examples of mammal taxa. The approaches to combined analysis of data characterizing different levels of biological organization in phylogenetic reconstructions are considered using examples of certain mammalian taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Agadjanian, “Small Mammals from the Pliocene-Pleistocene of the Russian Plain,” Doctoral Dissertation in Biology (Paleontol. Inst. Akad. Nauk SSSR, Moscow, 1992).

    Google Scholar 

  2. A. K. Agadjanian, “Questions of Early Adaptive Radiation of Mammals,” Paleontol. Zh., No. 1, 78–91 (2003a) [Paleontol. J. 37 (1), 76–88 (2003a)].

  3. A. K. Agadjanian, “Adaptive Radiation of Mammals: Major Stages,” Paleontol. Zh., No. 2, 73–81 (2003b) [Paleontol. J. 37 (2), 179–186 (2003b)].

  4. V. Barriel, E. Thuet, and P. Tassy, “Molecular Phylogeny of Elephantidae: Extreme Divergence of the Extant Forest African Elephant,” CR Acad. Sci. Paris 322, 447–454 (1999).

    Google Scholar 

  5. F. C. Chen and W. H. Li, “Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees,” Am. J. Hum. Genet. 68, 444–456 (2001).

    Article  Google Scholar 

  6. S. S. Chetverikov, “On Certain Points of the Evolutionary Process from the Point of View of Modern Genetics,” Zh. Eksperimental. Biol., Ser. A, No. 2, 3–54 (1926).

  7. S. S. Chetverikov, Problems of General Biology and Genetics (Reminiscences, Research Works, and Lectures) (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  8. A. W. Crompton, “On the Lower Jaw of Diarthrognathus and the Origin of the Mammalian Lower Jaw,” Proc. Zool. Soc. London 140, 441–452 (1963).

    Google Scholar 

  9. R. Debruyne, “Molecular Phylogeny of Living Elephants and Discussion on Infraspecific Systematics of Loxodonta africana and Elephas maximus,” in The World of Elephants: International Congress (Rome, 2001), pp. 628–629.

  10. R. Debruyne, V. Barriel, and P. Tassy, “Mitochondrial Cytochrome b of the Lyakhov Mammoth (Proboscidea, Mammalia): New Data and Phylogenetic Analyses of Elephantidae,” Mol. Phylogenet. Evol. 26, 421–434 (2003).

    Article  Google Scholar 

  11. M. Derenko, B. Malyarchuk, and G. F. Shields, “Mitochondrial Cytochrome b Sequence from a 33000 Year-Old Woolly Mammoth (Mammuthus primigenius),” Anc. Biomol. 1, 149–153 (1997).

    Google Scholar 

  12. I. A. Dubrovo, “Fossil Proboscideans,” Geol. Zb. Velenje Yugosl. 12 (Pliocenski in pleistocenski vretencarji saleske Kotline in Primerjava s sirsim prostorom), 159–197 (1997).

  13. I. A. Dubrovo and G. S. Rautian, “Comparative Analysis of Genetic Diversity in Mammoth,” in 2nd International Mammoth Conference, Amsterdam, May 17–21 (Amsterdam, 1999), pp. 15–17.

  14. J. Felsenstein, “Confidence-limits on Phylogenies with a Molecular Clock,” Syst. Zool. 34, 152–161 (1985).

    Article  Google Scholar 

  15. S. M. Gershenzon, “Mobilization Reserve of Intraspecific Variation,” Zh. Obshch. Biol. 2(1), 85–107 (1941).

    Google Scholar 

  16. A. Gopalakrishna and G. C. Chari, “A Review of the Taxonomic Position of Miniopterus Based on Embryological Characters,” Curr. Sci. 52, 1176–1180 (1983).

    Google Scholar 

  17. A. Gopalakrishna and K. B. Karim, “Female Genital Anatomy and the Morphogenesis of Foetal Membranes of Chiroptera and Their Bearing on the Phylogenetic Relationships of the Group,” Nat. Acad. Sci., India Golden Jubilee Commemoration Volume, 380–428 (1980).

  18. E. Hagelberg, M. G. Thomas, Ch. E. Cook, et al., “DNA from Ancient Mammoth Bones,” Nature 370, 333–334 (1994).

    Article  Google Scholar 

  19. J. Hauf, A. Bauer, N. Chalwatzis, et al., “Selective Amplification of a Mammoth Mitochondrial Cytochrome b Fragment Using an Elephant-specific Primer,” Curr. Genet. 27, 486–487 (1995).

    Article  Google Scholar 

  20. J. Hauf, U. Joger, F. K. Zimmermann, et al., “Protein and Nucleic Acid Sequences of Woolly Mammoth Cytochrome b and the Phylogenetic Position of Mammuthus within the Elephantidae,” Deinsea Rotterdam 6 (Suppl.: Mammoths and the Mammoths Fauna: Proceedings of the First International Mammoth Conference, St. Petersburg, Russia, Ed. by G. Haynes, J. Klimowicz, and W. Reumer), pp. 211–217 (1999).

  21. J. Hauf, N. Chalwatzis, U. Joger, and F. K. Zimmermann, “The Complete Mitochondrial Genome Sequence of the African Elephant (Loxodonta africana) and Its Implication for the Assessment of the Systematic Position of the Proboscidea,” Zoology 102, 184–195 (2000).

    Google Scholar 

  22. I. Horacek, “Kerivoula (Mammalia, Chiroptera), a Fossil in Europe?,” Acta Univ. Carolinae, Geol. Spin., No. 2, 213–222 (1986).

  23. M. Höss, M. Pääbo, and N. K. Vereshchagin, “Mammoth DNA Sequences,” Nature 370, 333 (1994).

    Article  Google Scholar 

  24. U. Joger, G. Garrido, J. Hauf, et al., “Genetic Investigations on Mammoth (Mammuthus primigenius),” Deinsea 9, 205–220 (2003).

    Google Scholar 

  25. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  26. M.-C King and A. C. Wilson, “Evolution at Two Levels: Molecular Similarities and Biological Differences between Humans and Chimpanzees,” Science 188, 107–116 (1975).

    Google Scholar 

  27. V. A. Krassilov, “Origin and Early Evolution of Flowering Plants” (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  28. J. Krause, P. H. Dear, J. L. Pollack, et al., “Multiplex Amplification of the Mammoth Mitochondrial Genome and the Evolution of Elephantidae,” Nature Publishing Group (2005) (doi:10.1038/nature04432)

  29. J. B. Kruskal, “Nonmetric Multidimensional Scaling: A Numerical Method,” Psychometrika 29(2), 115–129 (1964).

    Article  Google Scholar 

  30. A. V. Lopatin, “Early Paleogene Insectivores and Modern Taxonomic System of Lipotyphla,” in Modern Paleontology: Classical and New Methods (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2005), pp. 133–154 [in Russian].

    Google Scholar 

  31. J. M. Lowenstein, “Radioimmune Assay of Mammoth Tissue,” Acta Zool. Fen. 170, 233–235 (1985).

    Google Scholar 

  32. O. Madsen, M. Scally, C. J. Douady, et al., “Parallel Adaptive Radiations in Two Major Clades of Placental Mammals,” Nature 409, 610–614 (2001).

    Article  Google Scholar 

  33. V. J. Maglio, “Origin and Evolution of the Elephantidae,” Trans. Am. Phil. Soc., New Ser. 63(3), 1–149 (1973).

    Article  Google Scholar 

  34. L. H. Matthews, “Notes on the Genitalia and Reproduction of Some African Bats,” Proc. Zool. Soc. London, Ser. B 111, 289–346 (1942) (after Hoofer and Bussche, 2003).

    Google Scholar 

  35. P. Mein and Y. Tupinier, “Formule dentaire et position systematique du Minioptere (Mammalia, Chiroptera),” Mammalia 41, 207–211 (1977).

    Article  Google Scholar 

  36. S. V. Meyen, Fundamentals of Paleobotany (Nedra, Moscow, 1987) [in Russian].

    Google Scholar 

  37. G. S. Miller, Jr., and G. M. Allen, “The American Bats of the Genera Myotis and Pizonyx,” Smithson. Inst. US Nat. Mus. 144, 1–218 (1928).

    Google Scholar 

  38. G. S. Miller, Jr., “The Families and Genera of Bats,” Bull. US Nat. Mus. 57, 1–282 (1907).

    Google Scholar 

  39. H. J. Muller, “Our Load of Mutations,” Am. J. Hum. Genet. 2, 111–176 (1950).

    Google Scholar 

  40. W. J. Murphy, E. Eizirik, W. E. Johnson, et al., “Molecular Phylogenetics and the Origins of Placental Mammals,” Nature 409, 614–618 (2001a).

    Article  Google Scholar 

  41. W. J. Murphy, E. Eizirik, S. J. O’Brien, et al., “Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics,” Science 294, 2348–2351 (2001b).

    Article  Google Scholar 

  42. M. Noro, R. Masuda, I. A. Dubrovo, et al., “Molecular Phylogenetic Inference of the Woolly Mammoth Mammuthus primigenius, Based on Complete Sequence of Mitochondrial Cytochrome b and 12S Ribosomal RNA Genes,” J. Mol. Evol. 46, 314–326 (1998).

    Article  Google Scholar 

  43. M. J. Novacek, “Mammalian Phylogeny: Genes and Supertrees,” Curr. Biol. 11(14), 573–575 (2001).

    Article  Google Scholar 

  44. E. C. Olson, The Evolution of Life (Wedenfeld and Nicolson, London, 1965).

    Google Scholar 

  45. T. Ozawa, S. Hayashi, and V. M. Mikhelson, “Phylogenetic Position of Mammoth and Steller’s Cow within Tethitheria Demonstrated by Mitochondrial DNA Sequences,” J. Mol. Evol. 44, 406–413 (1997).

    Article  Google Scholar 

  46. N. Poulakakis, G. E. Theodorou, E. Zouros, and M. Mylonas, “Molecular Phylogeny of the Extinct Pleistocene Dwarf Elephant Palaeoloxodon antiquus falconeri from Tilos Island, Dodekanisa, Greece,” J. Mol. Evol. 55, 364–374 (2002).

    Article  Google Scholar 

  47. E. D. Pierson, “Molecular Systematics of the Microchiroptera: Higher Taxon Relationships and Biogeography,” PhD Thesis (Univ. California, Berkeley, 1986).

    Google Scholar 

  48. A. S. Rautian, “Paleontology As a Source of Information on the Laws and Factors of Evolution,” in Modern Paleontology (Nedra, Moscow, 1988), Vol. 2, pp. 76–118 [in Russian].

    Google Scholar 

  49. G. S. Rautian and I. A. Dubrovo, “Data on DNA Give Evidence for Parallel Development of Mammoths and Elephants,” in 4th Congress of the Theriological Society: Abstracts (Moscow, 1999), p. 212 [in Russian].

  50. G. S. Rautian and I. A. Dubrovo, “The Results of DNA Examination in Mammoth,” in Mammoth and Its Environment: 200 Years of Studying (Geos, Moscow, 2001), pp. 112–123 [in Russian].

    Google Scholar 

  51. G. S. Rautian and I. A. Dubrovo, “Data on DNA Give Evidence for Parallel Development in Mammoths and Elephants,” Deinsea 9, 381–394 (2003).

    Google Scholar 

  52. A. L. Roca, N. Georgiadis, J. Pecon-Slattery, and S. J. O’Brien, “Genetic Evidence for Two Species of Elephant in Africa,” Science 293, 1473–1477 (2001).

    Article  Google Scholar 

  53. V. V. Rossina, “Odontology of Myotis of Palearctic,” Plecotus et al. 5, 11–28 (2002).

    Google Scholar 

  54. V. V. Rossina, “Murinodonty As a Special Structural Type of Lower Molars of Bats,” Plecotus et al. 6, 3–6 (2003).

    Google Scholar 

  55. I. I. Schmalhausen, Organism as the Whole in Individual and Historical Development (Akad. Nauk SSSR, Moscow, 1938) [in Russian].

    Google Scholar 

  56. I. I. Schmalhausen, Factors of Evolution: The Theory of Stabilizing Selection, Ed. by Th. Dobzhansky (Blakiston, Toronto, 1949).

    Google Scholar 

  57. S. S. Schwatz, Ecological Patterns of Evolution (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  58. A. P. Semenov-Tyan-Shanskii, “Taxonomic Boundaries of Species and Its Subdivisions: An Attempt at Precise Categorization of Lower Taxonomic Units,” Zap. Akad. Nauk St. Peterb., Ser. 8 25(1), 1–29 (1910).

    Google Scholar 

  59. N. B. Simmons, “A Reappraisal of Interfamilial Relationships of Bats,” in Bat Biology and Conservation, Ed. by T. H. Kunz and P. A. Racey (Smithsonian Inst., Washington, 1998), pp. 3–26.

    Google Scholar 

  60. G. G. Simpson, The Major Features of Evolution (Columbia Univ. Press, Columbia, 1953).

    Google Scholar 

  61. B. H. Slaughter, Evolutionary Trends of Chiropteran Dentitions (Soutbern Metodolodist Univ. Press, Dallas, 1970), pp. 51–83.

    Google Scholar 

  62. B. Stadelmann, D. S. Jacobs, C. Schoeman, and M. Ruedi, “Phylogeny of African Myotis Bats (Chiroptera, Vespertilionidae) Inferred from Cytochrome b Sequences,” Acta Chiropt. 6(2), 177–192 (2004).

    Google Scholar 

  63. D. L. Swofford, “PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4” (Sinauer Ass., Sunderland Massachusetts, 2002).

    Google Scholar 

  64. L. P. Tatarinov, Morphological Evolution of Theriodonts and General Questions of Phylogenetics (Nauka, Moscow, 1976).

    Google Scholar 

  65. L. P. Tatarinov, “The Origin of Reptiles and Some Principles of Their Classification,” Paleontol. Zh., No. 4, 65–84 (1959).

  66. M. G. Thomas, E. Hagelberg, H. W. Jones, et al., “Molecular and Morphological Evidence on the Phylogeny of the Elephantidae,” Proc. R. Soc. London, Ser. B 267, 2493–2500 (2000).

    Article  Google Scholar 

  67. N. V. Timofeev-Resovsky, “Microevolution: Elementary Evolutionary Events, Materials, and Factors of the Evolutionary Process,” Botan. Zh. 43(3), 317–336 (1958).

    Google Scholar 

  68. M. P. Tiunov, Bats of the Far East of Russia (Dal’nauka, Vladivostok, 1997) [in Russian].

    Google Scholar 

  69. A. Valente, “Hair Structure of the Woolly Mammoth Mammuthus primigenius and the Modern Elephants, Elephas maximus and Loxodonta africana,” J. Zool. (London) 199, 271–274 (1983).

    Google Scholar 

  70. H. Yang, E. M. Golenberg, and J. Shoshani, “Phylogenetic Resolution within the Elephantidae Using Fossil DNA Sequence from the American Mastodon (Mammut americanus) As an Outgroup,” Proc. Nat. Akad. Sci. 93, 1190–1194 (1996).

    Article  Google Scholar 

  71. E. Zuckerkandl and L. Pauling, Evolution Divergence and Convergence in Proteins, Evolving Genes and Proteins (Academic Press, New York, 1965), pp. 97–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautian, G.S., Rossina, V.V. & Rautian, A.S. Approaches to the resolution of contradictions between phylogenetic reconstructions based on morphofunctional and genetic data. Paleontol. J. 40, S508–S523 (2006). https://doi.org/10.1134/S003103010610011X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003103010610011X

Key words

Navigation