Skip to main content
Log in

The Influence of Surface Roughness on Photonic-Nanojet Parameters of Dielectric Microspheres

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

All naturally found and man-made solid microparticles have a rough surface. Upon optical radiation scattering from such particles, in addition to geometric shape, the surface texture becomes an important morphological factor of the scatterer that determines its optical properties. We present the results of numerical FDTD simulation of an optical-wave focusing by a dielectric microsphere with a randomly distributed surface roughness. The cases of azimuthally symmetric and asymmetric distortions of the particle surface are analyzed. It is demonstrated that the key parameters of the near-field focal region (intensity, longitudinal and transverse dimensions, focal distance) referred to as the photonic nanojet (PNJ) turn out to be sensitive to changes in the sphere-surface texture. In the process, two parameters, the peak intensity of the PNJ and its length, experience the largest changes. The influence of the optical contrast (the relative refractive index) of the microsphere that scatters radiation on PNJ characteristics is analyzed, and the possibility of reducing the influence of surface roughness on the quality of the near-field focusing by means of microsphere watering (water-uptake) is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. A. Wielicki, B. R. Barkstrom, B. A. Baum, T. P. Charlock, R. N. Green, D. P. Kratz, R. B. Lee, P. Minnis, G. L. Smith, T. Wong, D. F. Young, R. D. Cess, J. A. Coakley, A. H. Crommelynck, L. Donner, et al., IEEE Trans. Geosci. Remote Sens. 36, 1127 (1998).

    Article  ADS  Google Scholar 

  2. M. V. Panchenko, M. V. Kabanov, Yu. A. Pkhalagov, B. D. Belan, V. S. Kozlov, S. M. Sakerin, D. M. Kabanov, V. N. Uzhegov, N. N. Shchelkanov, V. V. Polkin, S. A. Terpugova, G. N. Tolmachev, E. P. Yausheva, M. Yu. Arshinov, D. V. Simonenkov, et al., Atmos. Ocean. Opt. 33, 27 (2020).

    Article  Google Scholar 

  3. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, Opt. Lett. 28, 589 (2003).

    Article  ADS  Google Scholar 

  4. P. N. Zenkova, D. G. Chernov, V. P. Shmargunov, M. V. Panchenko, and B. D. Belan, Atmos. Ocean. Opt. 35, 43 (2022).

    Article  Google Scholar 

  5. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).

    Article  ADS  Google Scholar 

  6. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).

    Article  ADS  Google Scholar 

  7. S. Kato, S. Chonan, and T. Aoki, Opt. Lett. 39, 773 (2014).

    Article  ADS  Google Scholar 

  8. C. Liu and A. Ye, Opt. Commun. 485, 126658 (2021). https://doi.org/10.1016/j.optcom.2020.126658

    Article  Google Scholar 

  9. A. C. Assafrao, N. Kumar, A. J. H. Wachters, S. F. Pe-reira, H. P. Urbach, M. Brun, and S. Olivier, Appl. Phys. Lett. 104, 101101 (2014). https://doi.org/10.1063/1.4867460

    Article  ADS  Google Scholar 

  10. X. Cui, D. Erni, and C. Hafner, Opt. Express 16, 13560 (2008).

    Article  ADS  Google Scholar 

  11. V. D. Zaitsev and S. S. Stafeev, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium PIERS—SPRING (2019), p. 19468111. https://doi.org/10.1109/PIERS-Spring46901.2019.9017599

  12. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 32, 1570 (2015). https://doi.org/10.1364/JOSAB.27.001991

    Article  ADS  Google Scholar 

  13. Yu. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, J. Opt. 20, 065606 (2018). https://doi.org/10.1088/2040-8986/aac1d9

    Article  ADS  Google Scholar 

  14. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).

    Article  ADS  Google Scholar 

  15. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, Opt. Commun. 283, 4775 (2010). https://doi.org/10.1016/j.optcom.2010.07.007

    Article  ADS  Google Scholar 

  16. Yu. E. Geints, I. V. Minin, E. K. Panina, A. A. Zemlyanov, and O. V. Minin, Opt. Quant. Electron. 49, 118 (2017). https://doi.org/10.1007/s11082-017-0958-y

    Article  Google Scholar 

  17. A. Mandal, P. Tiwari, P. K. Upputuri, and V. R. Dantham, Sci. Rep. 12, 173 (2022). https://doi.org/10.1038/s41598-021-03610-3

    Article  ADS  Google Scholar 

  18. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 29, 758 (2012).

    Article  ADS  Google Scholar 

  19. A. Devilez, N. Bonod, B. Stout, D. Gerard, J. Wenger, H. Rigneault, and E. Popov, Opt. Express 17, 2089 (2009).

    Article  ADS  Google Scholar 

  20. S. Lecler, Y. Takakura, and P. Meyrueis, Opt. Lett. 30, 2641 (2005).

    Article  ADS  Google Scholar 

  21. A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A 22, 2847 (2005).

    Article  ADS  Google Scholar 

  22. A. Abdurrochman, S. Lecler, F. Mermet, B. Y. Tumbelaka, B. Serio, and J. Fontaine, Appl. Opt. 53, 7202 (2014).

    Article  ADS  Google Scholar 

  23. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, SPIE Newsroom (2010). https://doi.org/10.1117/2.1201002.002578

  24. M. Terakawa and Y. Tanaka, Opt. Lett. 36, 2877 (2011).

    Article  ADS  Google Scholar 

  25. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature (London, U.K.) 419 (6903), 145 (2002). https://doi.org/10.1038/nature01007

    Article  ADS  Google Scholar 

  26. Zz. Zhou, H. Ali, Zs. Hou, W. Hue, and Y. Cao, J. Cent. South Univ. 29, 3323 (2022). https://doi.org/10.1007/s11771-022-5116-4

    Article  Google Scholar 

  27. C. Lia, G. W. Kattawar, and P. Yang, J. Quant. Spectrosc. Radiat. Transfer 89, 123 (2004).

    Article  ADS  Google Scholar 

  28. W. Sun, T. Nousiainen, K. Muinonen, Q. Fu, N. G. Loeb, and G. Videen, J. Quant. Spectrosc. Radiat. Transfer 79–80, 1083 (2003). https://doi.org/10.1016/S0022-4073(02)00341-2

    Article  ADS  Google Scholar 

  29. C. Li, G. W. Kattawar, and P. Yang, J. Quant. Spectrosc. Radiat. Transfer 89, 123 (2004).

    Article  ADS  Google Scholar 

  30. I. Mahariq, V. N. Astratov, and H. Kurt, J. Opt. Soc. Am. B 33, 535 (2016). https://doi.org/10.1364/JOSAB.33.000535

    Article  ADS  Google Scholar 

  31. I. Mahariq, T. Abdeljawad, A. S. Karar, S. A. Alboon, H. Kurt, and A. V. Maslov, Photonics 7, 50 (2020). https://doi.org/10.3390/photonics7030050

    Article  Google Scholar 

  32. B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. V. Mi-nin, O. V. Minin, and Z. Wang, Opt. Mater. Express 7, 1820 (2017).

    Article  ADS  Google Scholar 

  33. Yu. E. Geints, A. A. Zemlyanov, and A. V. Pal’chikov, Atmos. Ocean. Opt. 10, 974 (1997).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Panina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Panina, E.K. The Influence of Surface Roughness on Photonic-Nanojet Parameters of Dielectric Microspheres. Opt. Spectrosc. (2024). https://doi.org/10.1134/S0030400X24700097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0030400X24700097

Keywords:

Navigation