Skip to main content
Log in

Enhanced photonic nanojets for submicron patterning

基于光子纳米射流制备亚微米图案

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Photonic nanojets (PNJs) have a wide range of applications in laser processing, nanolithography, optical high-density storage, super-resolution microscopy, and other fields due to their processing capacity to overcome the diffraction limit. Herein, we control static microsphere be developed into the motion state to fabricate vector graphics nano-grooves. The microspheres roll on the substrate while the laser is kept synchronously irradiated, and the overlapping PNJ ablated craters form patterned grooves on the indium-tin oxide (ITO) substrate. Thus, PNJ has been expanded from “point” processing to “line” processing. The fabricated nano grooves have high continuity and consistency. Whereas, the precise customization of critical groove dimension can be achieved via modulation in diameter and kinetics of dielectric microshperes. Furthermore, by etching vectographs on an ITO conductive glass substrate, we demonstrated the advantages and potential of the proposed method in nanopatterning. The proposed method effectively reduces the cost and complexity of photonic nanojets applied in nanopatterning. The proposed nanopatterning methodology will play a vital role in the fabrication of semiconductor materials, sensors, microfluidic devices, surface-enhanced Raman scattering (SERS), biomedicine, nanoscience and nanoengineering.

摘要

光子纳米射流由于其具有克服衍射极限的处理能力,在激光加工、纳米光刻、光学高密度存 储、超分辨率显微等领域有着广泛的应用。本文通过将静态微球转变为运动状态,在激光同步辐照 下,重叠烧蚀的坑在ITO基板上形成图形化的纳米凹槽。由此,光子纳米射流从“点”加工扩展到 “线”加工。所制备的纳米沟槽具有良好的连续性和一致性。此外,沟槽的尺寸形貌可以通过调控微 球直径和刻蚀速度来实现。最后,通过在ITO玻璃衬底上刻蚀矢量图,证明了该方法在微纳制造方面 的优势和潜力。此方法将在半导体材料、传感器、微流控器件、表面增强拉曼散射(SERS)、生物医 学、纳米科学和纳米工程等领域发挥重要作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XU Hai-yuan, ZHONG Si-hua, ZHUANG Yu-feng, et al. Controllable nanoscale inverted Pyramids for highly efficient quasi-omnidirectional crystalline silicon solar cells [J]. Nanotechnology, 2018, 29: 015403. DOI: https://doi.org/10.1088/1361-6528/aa9a96.

    Article  Google Scholar 

  2. KUANG Ping, EYDERMAN S, HSIEH M L, et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture [J]. ACS Nano, 2016, 10(6): 6116–6124. DOI: https://doi.org/10.1021/acsnano.6b01875.

    Article  Google Scholar 

  3. WANG Yan, LIU Yao-ping, YANG Li-xia, et al. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles [J]. Nanoscale, 2017, 9(2): 907–914. DOI: https://doi.org/10.1039/c6nr08126f.

    Article  Google Scholar 

  4. WILBERS J G E, BERENSCHOT J W, TIGGELAAR R M, et al. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures [J]. Journal of Micromechanics and Microengineering, 2018, 28: 044003.

    Article  Google Scholar 

  5. YANG Jing, LI Jia-bao, DU Zhe-ren, et al. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection [J]. Scientific Reports, 2014, 4: 6657. DOI: https://doi.org/10.1038/srep06657.

    Article  Google Scholar 

  6. NEUBRECH F, HUCK C, WEBER K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas [J]. Chemical Reviews, 2017, 117(7): 5110–5145. DOI: https://doi.org/10.1021/acs.chemrev.6b00743.

    Article  Google Scholar 

  7. YOKOGAWA S, BURGOS S P, ATWATER H A. Plasmonic color filters for CMOS image sensor applications [J]. Nano Letters, 2012, 12(8): 4349–4354. DOI: https://doi.org/10.1021/nl302110z.

    Article  Google Scholar 

  8. PENG Kui-qing, WANG Xin, LI Li, et al. High-performance silicon nanohole solar cells [J]. Journal of the American Chemical Society, 2010, 132(20): 6872–6873. DOI: https://doi.org/10.1021/ja910082y.

    Article  Google Scholar 

  9. NAM S, CHOI I, FU Chi-cheng, et al. Graphene nanopore with a self-integrated optical antenna [J]. Nano Letters, 2014, 14(10): 5584–5589. DOI: https://doi.org/10.1021/nl503159d.

    Article  Google Scholar 

  10. KIM C S, AHN S H, JANG D Y. Review: Developments in micro/nanoscale fabrication by focused ion beams [J]. Vacuum, 2012, 86(8): 1014–1035. DOI: https://doi.org/10.1016/j.vacuum.2011.11.004.

    Article  Google Scholar 

  11. KUSSEROW T, WULF M, ZAMORA R, et al. Processing of photonic crystals in InP membranes by focused ion beam milling and plasma etching [J]. Microelectronic Engineering, 2013, 102: 25–28. DOI: https://doi.org/10.1016/j.mee.2012.02.019.

    Article  Google Scholar 

  12. STANFORD M G, LEWIS B B, IBERI V, et al. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating [J]. Small, 2016, 12(13): 1779–1787. DOI: https://doi.org/10.1002/smll.201503680.

    Article  Google Scholar 

  13. KRÁTKÝ S, URBÁNEK M, KOLAŘÍK V. PEC reliability in 3D E-beam DOE nanopatterning [J]. Microscopy and Microanalysis, 2015, 21(S4): 230–235. DOI: https://doi.org/10.1017/s1431927615013422.

    Article  Google Scholar 

  14. PEREZ-ROLDAN M J, MULDERS J L, TROMPENAARS P F. Oxygen-assisted purification of platinum structures deposited by ion and electron beam induced processes [J]. Journal of Physics D: Applied Physics, 2017, 50(20): 205307. DOI: https://doi.org/10.1088/1361-6463/aa69e2.

    Article  Google Scholar 

  15. WINKLER R, SCHMIDT F P, HASELMANN U, et al. Direct-write 3D nanoprinting of plasmonic structures [J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8233–8240. DOI: https://doi.org/10.1021/acsami.6b13062.

    Article  Google Scholar 

  16. MAKOTO O. Nanoimprint Graphoepitaxy for molecularly oriented nanofabrication [J]. Journal of Photopolymer Science & Technology, 2017, 30: 519–525.

    Article  Google Scholar 

  17. TAKEI S, HANABATA M. Sub-70 nm resolution patterning of high etch-resistant epoxy novolac resins using gas permeable templates in ultraviolet nanoimprint lithography [J]. Applied Physics Express, 2016, 9: 056501.

    Article  Google Scholar 

  18. PAUN I A, POPESCU R C, MUSTACIOSU C C, et al. Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration [J]. Biofabrication, 2018, 10(2): 025009. DOI: https://doi.org/10.1088/1758-5090/aaa718.

    Article  Google Scholar 

  19. HIGGINS D A, EVERETT T A, XIE Ai-fang, et al. Highresolution direct-write multiphoton photolithography in poly (methylmethacrylate) films [J]. Applied Physics Letters, 2006, 88(18): 184101. DOI: https://doi.org/10.1063/1.2200476.

    Article  Google Scholar 

  20. KHAN A, WANG Zeng-bo, SHEIKH M A, et al. Laser micro/nano patterning of hydrophobic surface by contact particle lens array [J]. Applied Surface Science, 2011, 258(2): 774–779. DOI: https://doi.org/10.1016/j.apsusc.2011.08.089.

    Article  Google Scholar 

  21. PAN Heng, HWANG D J, KO S H, et al. High-throughput near-field optical nanoprocessing of solution-deposited nanoparticles [J]. Small, 2010, 6(16): 1812–1821. DOI: https://doi.org/10.1002/smll.201000345.

    Article  Google Scholar 

  22. KHAN A, WANG Zeng-bo, SHEIKH M A, et al. Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays [J]. Journal of Physics D: Applied Physics, 2010, 43(30): 305302. DOI: https://doi.org/10.1088/0022-3727/43/30/305302.

    Article  Google Scholar 

  23. BRODOCEANU D, ALHMOUD H Z, ELNATHAN R, et al. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching [J]. Nanotechnology, 2016, 27(7): 075301. DOI: https://doi.org/10.1088/0957-4484/27/7/075301.

    Article  Google Scholar 

  24. WALLER E H, KARST J, von FREYMANN G. Photosensitive material enabling direct fabrication of filigree 3D silver microstructures via laser-induced photoreduction [J]. Light: Advanced Manufacturing, 2021, 2(2): 228–233.

    Google Scholar 

  25. SERRA P, PIQUÉ A. Laser-induced forward transfer: Fundamentals and applications [J]. Advanced Materials Technologies, 2019, 4(1): 1800099.

    Article  Google Scholar 

  26. GUO W, WANG Z B, LI L, et al. Near-field laser parallel nanofabrication of arbitrary-shaped patterns [J]. Applied Physics Letters, 2007, 90(24): 243101. DOI: https://doi.org/10.1063/1.2748035.

    Article  Google Scholar 

  27. MICHELETTO R, FUKUDA H, OHTSU M. A simple method for the production of a two-dimensional, ordered array of small latex particles [J]. Langmuir, 1995, 11: 3333–3336. DOI: https://doi.org/10.1021/LA00009A012.

    Article  Google Scholar 

  28. WU Yan, JI Ling-fei, LIN Zhen-yuan, et al. Substrate effect of laser surface sub-micro patterning by means of self-assembly SiO2 microsphere array [J]. Applied Surface Science, 2015, 357: 832–837. DOI: https://doi.org/10.1016/j.apsusc.2015.09.066.

    Article  Google Scholar 

  29. PENA A, WANG Zeng-bo, WHITEHEAD D, et al. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd: YVO4 laser [J]. Applied Physics A, 2010, 101(2): 287–295. DOI: https://doi.org/10.1007/s00339-010-5819-5.

    Article  Google Scholar 

  30. SEDAO X, DERRIEN J Y, ROMER G, et al. Laser surface micro-/nano-structuring by a simple transportable micro-sphere lens array [J]. Journal of Applied Physics, 2012, 112: 103111.

    Article  Google Scholar 

  31. DEEPAK KALLEPALLI L N, GROJO D, CHARMASSON L, et al. Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films [J]. Journal of Physics D: Applied Physics, 2013, 46(14): 145102. DOI: https://doi.org/10.1088/0022-3727/46/14/145102.

    Article  Google Scholar 

  32. KO Y H, MAGNUSSON R. Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? [J]. Optica, 2018, 5(3): 289. DOI: https://doi.org/10.1364/optica.5.000289.

    Article  Google Scholar 

Download references

Funding

Projects(LZ20E050003, LD22E050001) supported by the Zhejiang Provincial Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-shan Hou  (侯智善) or Yu Cao  (曹宇).

Additional information

Contributors

CAO Yu and HOU Zhi-shan provided the concept. ZHOU Zhuang-zhuang carried out the experiment and wrote the draft of the manuscript. XUE Wei and ALI Hassan analyzed the experimental data. CAO Yu reviewed the manuscript. ZHOU Zhuang-zhuang and CAO Yu replied to reviewers’ comments and revised the manuscript.

Conflict of interest

ZHOU Zhuang-zhuang, ALI Hassan, HOU Zhi-shan, XUE Wei, and CAO Yu declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Zz., Ali, H., Hou, Zs. et al. Enhanced photonic nanojets for submicron patterning. J. Cent. South Univ. 29, 3323–3334 (2022). https://doi.org/10.1007/s11771-022-5116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5116-4

Key words

关键词

Navigation