Skip to main content
Log in

Conformational Dynamics in Excited States and Photophysical Properties of Meso-Substituted Nitro Derivatives of Octaethylporphyrin and Their Zn Complexes

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using the density functional theory methods, quantum chemical calculations of the excited states of monosubstituted and disubstituted meso-nitro derivatives of octaethylporphyrin (OEP) and their Zn complexes are performed. The obtained data indicate that the charge transfer states are located substantially higher than the locally excited states and do not play a considerable role in the fluorescence quenching of these compounds, which was assumed earlier. It is shown that conformational dynamics take place for all studied compounds in the triplet state, which gives rise to the formation of structures with a common conjugated system of bonds between the porphyrin macrocycle and the nitro group. It is characterized by a small activation barrier (<200 cm–1) of structural rearrangement and a noticeable decrease in the Δ(T1S0) energy gap between the ground and lower triplet states. The obtained data indicate that H2-α-NO2-OEP, H2‑α,γ‑(NO2)2-OEP, and Zn-α,γ-(NO2)2-OEP in the triplet state in toluene solutions have conformations with the Δ(T1S0) energy gap noticeably less than 7800 cm–1. This makes it possible to explain the decrease in the quantum yield of interconversion of these compounds when estimating from the results of measuring the luminescence intensity of singlet oxygen. The fact that the sum of the interconversion and fluorescence quantum yields for the compounds under study is not equal to unity can be explained by conformational transformations in the excited states, which can have an effect on the probability of internal conversion in the singlet state and the accuracy of determining the interconversion quantum yield by different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. Tsolekile, S. Nelana, and O. S. Oluwafemi, Molecules 24, 2669 (2019).

    Article  Google Scholar 

  2. R. R. Allison and C. H. Sibata, Photodiagn. Photodyn. Ther. 7, 61 (2010).

    Article  Google Scholar 

  3. D. Monti, S. Nardis, M. Stefanelli, R. Paolesse, C. di Natale, and A. D’Amico, J. Sensors 2009, 856053 (2009). https://doi.org/10.1155/2009/856053

    Article  Google Scholar 

  4. I. McConnell, G. Li, and G. W. Brudvig, Chem. Biol. 17, 434 (2010).

    Article  Google Scholar 

  5. B. Zhang and L. Sun, Chem. Soc. Rev. 48, 2216 (2019).

    Article  Google Scholar 

  6. D. Anghel, A. Lascu, I. Fratilescu, C. Epuran, N. Plesu, and E. Fagadar-Cosma, J. Solar Energy Res. Updates 6, 78 (2019).

    Google Scholar 

  7. N. V. Ivashin and E. E. Shchupak, Opt. Spectrosc. 121, 181 (2016).

    Article  ADS  Google Scholar 

  8. B. L. Grigorenko, I. V. Polyakov, and A. V. Nemukhin, J. Chem. Phys. 154, 065101 (2021). https://doi.org/10.1063/5.0026475

    Article  ADS  Google Scholar 

  9. I. V. Avilov, E. I. Zenkevich, E. I. Sagun, and I. V. Filatov, J. Phys. Chem. A 108, 5684 (2004).

    Article  Google Scholar 

  10. E. E. Shchupak, N. V. Ivashin, and E. I. Sagun, Opt. Spectrosc. 115, 37 (2013).

    Article  ADS  Google Scholar 

  11. N. V. Ivashin, E. E. Shchupak, and E. I. Sagun, Opt. Spectrosc. 118, 84 (2015).

    Article  ADS  Google Scholar 

  12. N. V. Ivashin, E. E. Shchupak, A. Y. Panarin, and E. I. Sagun, Opt. Spectrosc. 118, 882 (2015).

    Article  ADS  Google Scholar 

  13. N. V. Ivashin and E. E. Shchupak, Opt. Spectrosc. 110, 694 (2011).

    Article  ADS  Google Scholar 

  14. V. S. Chirvony, A. S. Shulga, B. Kallenbring, S. Larsson, and V. Sundstrom, J. Phys. Chem. 100, 13857 (1996).

    Article  Google Scholar 

  15. S. S. Dvornikov, T. F. Kachura, V. N. Knyukshto, V. A. Kuzmitskii, K. N. Solovev, and I. K. Shushkevich, Opt. Spectrosc. 61, 768 (1986).

    ADS  Google Scholar 

  16. D. Gust, T. A. Moore, D. K. Luttrull, G. R. Seely, E. Bittersmann, R. V. Bensasson, M. Rougee, E. J. Land, F. C. D. Schryver, and M. Auweraer, Photochem. Photobiol. 51, 419 (1990).

    Article  Google Scholar 

  17. V. S. Chirvony, A. van Hoek, T. J. Schaafsma, P. P. Pershukevich, I. V. Filatov, I. V. Avilov, S. I. Shishporenok, S. N. Terekhov, and V. L. Malinovskii, J. Phys. Chem. B 102, 9714 (1998).

    Article  Google Scholar 

  18. V. Knyukshto, E. Zenkevich, E. Sagun, A. Shulga, and S. Bachilo, Chem. Phys. Lett. 304, 155 (1999).

    Article  ADS  Google Scholar 

  19. N. V. Ivashin and S. N. Terekhov, Opt. Spectrosc. 126, 205 (2019).

    Article  ADS  Google Scholar 

  20. J. Medinger and F. Wilkilson, Trans. Faraday Soc. 61, 620 (1965).

    Article  Google Scholar 

  21. G. P. Gurinovich and K. I. Salokhiddinov, Dokl. Phys. 26, 867 (1981).

    Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  23. T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 393, 51 (2004).

    Article  ADS  Google Scholar 

  24. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  25. M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, and G. Scalmani, J. Chem. Phys. 124, 124520 (2006).

    Article  ADS  Google Scholar 

  26. P. Flukiger, H. P. Luthi, S. Portmann, and J. Weber, Molekel 5.4.0.8 (Swiss Center Sci. Comput., Manno, Switzerland, 2009).

    Google Scholar 

  27. R. D. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland, GaussView, Version 5.0 (Semichem, Inc., Shawnee Mission, KS, 2008).

    Google Scholar 

  28. N. V. Ivashin and O. P. Parkhots, Opt. Spectrosc. 97, 357 (2004).

    Article  ADS  Google Scholar 

  29. A. E. Reed, L. A. Curtiss, and F. Weihhold, Chem. Rev. 88, 899 (1988).

    Article  Google Scholar 

  30. V. Knyukshto, E. Zenkevich, E. Sagun, A. Shulga, and S. Bachilo, Chem. Phys. Lett. 297, 97 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks E.I. Zen’kevich. and A.Yu. Panarina for taking part in the discussion of the obtained data, as well as the Computing Center of the National Academy of Sciences of Belarus for providing the opportunity to perform calculations.

Funding

This study was supported by State Scientific Research Program Photonics and Opto- and Microelectronics 1.4.01 of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivashin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashin, N.V. Conformational Dynamics in Excited States and Photophysical Properties of Meso-Substituted Nitro Derivatives of Octaethylporphyrin and Their Zn Complexes. Opt. Spectrosc. 129, 935–940 (2021). https://doi.org/10.1134/S0030400X21070092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21070092

Keywords:

Navigation