Skip to main content
Log in

Dynamics of Thermoluminescence under Dual-Wavelength Vis–IR Laser Excitation of Eosin Molecules in a Polyvinyl Butyral Film Containing Oxygen and Silver Nanoparticles

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Electronic and vibrational energy transfer processes taking place in molecular complexes in a polymer are investigated under dual-wavelength (visible at λ = 532 nm and IR at wavelength λ = 10.6 μm) laser photoexcitation of eosin molecules (С = 4 × 10–4 М) in air and without it (р ≈ 10–4 Torr) in thin polyvinyl butyral (PVB) films containing silver nanoparticles (R ≈ 36 nm) prepared by laser ablation. Generation of singlet oxygen, singlet–triplet annihilation, and enhancement of plasmon quenching of dye fluorescence are studied. Thermal-energy transfer processes in thin PVB films following pulsed IR excitation are simulated, and the temperature conductivity coefficients of the polymer films in the presence of silver nanoparticles are calculated. Low-temperature processes in PVB films containing dye molecules taking place after IR excitation are investigated, and the mechanism for accelerating intercombination S1Т1 transitions as a result of thermal heating and intramolecular vibrational-energy distribution is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. S. Letokhov, Sov. Phys. Usp. 19, 149 (1976).

    Article  ADS  Google Scholar 

  2. F. Yang, L. Jiang, S. Wan, Zh. Cao, L. Liu, M. Wang, and Y. Lu, Opt. Laser Technol. 93, 194 (2017).

    Article  ADS  Google Scholar 

  3. D. Ciofini, I. Cacciari, and S. Siano, Measurement 122, 200 (2017).

    Google Scholar 

  4. A. A. Makarov, A. L. Malinovskii, and E. A. Ryabov, Phys. Usp. 55, 977 (2012).

    Article  ADS  Google Scholar 

  5. A. A. I. Khalil, Opt. Laser Technol. 75, 105 (2015).

    Article  ADS  Google Scholar 

  6. V. V. Komarov, A. M. Popova, I. O. Stureiko, L. Schmidt, and H. Jungclas, Mosc. Univ. Phys. Bull. 68, 339 (2013).

    Article  ADS  Google Scholar 

  7. G. N. Makarov, Phys. Usp. 60, 227 (2017).

    Article  ADS  Google Scholar 

  8. M. A. Odeneye and A. J. Stace, J Phys. Chem. Chem. Phys. 7, 998 (2005).

    Article  Google Scholar 

  9. S. L. Sobolev, Int. J. Heat Mass Transfer 94, 138 (2016).

    Article  Google Scholar 

  10. G. Du, Y. Wu, N. Uddin, Q. Yang, F. Chen, Y. Lu, H. Bian, and X. Hou, Opt. Commun. 375, 54 (2016).

    Article  ADS  Google Scholar 

  11. T. Ebato, M. Kayano, S. Sato, and N. Mikami, J. Phys. Chem. A 105, 8623 (2001).

    Article  Google Scholar 

  12. D. Nishijima, E. M. Hollmann, and R. P. Doerne, Spectrochim. Acta, Part A 124, 82 (2016).

    Article  ADS  Google Scholar 

  13. V. V. Klimov, Nanoplasmonics (Fizmtlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  14. S. A. Reitlinger, Permeability of Polymer Materials (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  15. I. Samusev, R. Borkunov, M. Tsarkov, E. Konstantinova, Y. Antipov, M. Demin, and V. Bryukhanov, J. Phys.: Conf. Ser. 961, 012011 (2018).

    Google Scholar 

  16. S. Gaponenko, Introduction to Nanophotonics (Cambridge Univ. Press, New York, 2010).

    Book  Google Scholar 

  17. V. V. Bryukhanov, B. F. Minaev, A. V. Tcibulnikova, N. S. Tikhomirova, and V. A. Slezhkin, J. Opt. Technol. 81, 625 (2014).

    Article  Google Scholar 

  18. N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. Lany de la Chapelle, Appl. Phys. Lett. 97, 023113 (2010).

    Article  ADS  Google Scholar 

  19. B. F. Minaev, Russ. Chem. Rev. 76, 989 (2007).

    Article  Google Scholar 

  20. C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003).

    Article  Google Scholar 

  21. V. V. Bryukhanov, B. M. Minaev, A. V. Tsibul’nikova, and V. A. Slezhkin, Opt. Spectrosc. 119, 29 (2015).

    Article  ADS  Google Scholar 

  22. J. R. Lakowic, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2006).

    Book  Google Scholar 

  23. C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968).

    Google Scholar 

  24. V. V. Ermolaev, Russ. Chem. Rev. 70, 471 (2001).

    Article  ADS  Google Scholar 

  25. A. Kh. Kuptsov and G. N. Zhizhin, Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  26. E. S. Medvedev and V. I. Osherov, Theory of Nonradiative Transitions in Polyatomic Molecules (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  27. E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 111, 34 (2011).

    Article  ADS  Google Scholar 

  28. A. A. Ovchinnikov and N. S. Erikhman, Sov. Phys. Usp. 25, 738 (1982).

    Article  ADS  Google Scholar 

  29. A. V. Lykov, Theory of Heat Transfer (Vysshaya Shkola, Moscow, 1967) [in Russian].

    Google Scholar 

  30. L. N. Novichenok and Z. P. Shul’man, Thermophysical Properties of Polymers (Nauka Tekhnika, Minsk, 1971) [in Russian].

    Google Scholar 

  31. V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (Nauka, Moscow, 1985; Elsevier Science, Amsterdam, 1982).

  32. B. F. Minaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 12 (1978).

  33. M. D. Fernández, M. J. Fernández, and P. Hoces, J. Appl. Polym. Sci. 102, 5007 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Results reported in the present publication were obtained under state assignment no. 3.5022.2017/BCh of the Russian Ministry of Education and Science. Financial support from the 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Konstantinova or V. V. Bryukhanov.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.I., Minaev, B.F., Tsibul’nikova, A.V. et al. Dynamics of Thermoluminescence under Dual-Wavelength Vis–IR Laser Excitation of Eosin Molecules in a Polyvinyl Butyral Film Containing Oxygen and Silver Nanoparticles. Opt. Spectrosc. 125, 874–881 (2018). https://doi.org/10.1134/S0030400X19020152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19020152

Navigation