Skip to main content
Log in

Optimization of Excitation and Detection Modes to Detect Ultra-Small Amounts of Semiconductor Quantum Dots Based on Cadmium Selenide

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

At present, fluorescent spectroscopy is a powerful tool that is used in many biology applications. In practice, fluorescent labels based on organic dyes and semiconductor quantum dots are used. It is noteworthy that the semiconductor quantum dots have distinct advantages over organic dyes. At the same time, the efficiency parameters and modes of detection and excitation have not been investigated sufficiently. The results of theoretical study on the optimization of the excitation and detections modes for detecting ultra-small amounts of CdSe/ZnS core/shell semiconductor quantum dots are presented at this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Moulick and J. B. Udgaonkar, J. Mol. Biol. 429, 886 (2017).

    Article  Google Scholar 

  2. H. Chen and E. Rhoades, Curr. Opin. Struct. Biol. 18, 516 (2008).

    Article  Google Scholar 

  3. H. Hevekerl, J. Tornmalm, and J. Widengren, Sci. Rep. 6, 35052 (2016).

    Article  ADS  Google Scholar 

  4. R. Bilan, I. Nabiev, and A. Sukhanova, ChemBioChem 17, 2103 (2016).

    Article  Google Scholar 

  5. A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, et al., Nanomed.: Nanotech. Biol. Med. 8, 516 (2012).

    Article  Google Scholar 

  6. A. Sukhanova, J. Devy, L. Venteo, et al., Anal. Biochem. 324, 60 (2004).

    Article  Google Scholar 

  7. K. Brazhnik, Z. Sokolova, M. Baryshnikova, et al., Nanomed.: Nanotech. Biol. Med. 11, 1065 (2015).

    Article  Google Scholar 

  8. H. Hafian, A. Sukhanova, M. Turini, et al., Nanomed.: Nanotech. Biol. Med. 10, 1701 (2014).

    Article  Google Scholar 

  9. A. Sukhanova, A. S. Susha, A. Bek, et al., Nano Lett. 7, 2322 (2007).

    Article  ADS  Google Scholar 

  10. L. Wessels and H. Raad, Am. J. Eng. Appl. Sci. 9, 1088 (2016).

    Article  Google Scholar 

  11. P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.- Eur. J. 19, 1534 (2013).

    Article  Google Scholar 

  12. E. Petryayeva, W. R. Algar, and I. L. Medintz, Appl. Spectrosc. 67, 215 (2013).

    Article  ADS  Google Scholar 

  13. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008).

    Article  Google Scholar 

  14. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  Google Scholar 

  15. J. Jasieniak, L. Smith, J. Van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).

    Article  Google Scholar 

  16. K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Nano Today 11, 189 (2016).

    Article  Google Scholar 

  17. F. Ramos-Gomes, J. Bode, A. Sukhanova, et al., Sci. Rep. 8, 4595 (2018).

    Article  ADS  Google Scholar 

  18. J. C. Bonilla, F. Bozkurt, S. Ansari, N. Sozer, and J. L. Kokini, Trends Food Sci. Technol. 53, 75 (2016).

    Article  Google Scholar 

  19. G. Collazuol, M. G. Bisogni, S. Marcatili, C. Pie-monte, and A. del Guerra, Nucl. Instrum. Methods Phys. Res., Sect. A 628, 389 (2011).

    Google Scholar 

  20. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 1063 (1999).

    Article  ADS  Google Scholar 

  21. S. Moon and D. Y. Kim, Opt. Express 16, 13990 (2008).

    Article  ADS  Google Scholar 

  22. R. K. P. Benninger, W. J. Ashby, E. A. Ring, and D. W. Piston, Opt. Lett. 33, 2895 (2008).

    Article  ADS  Google Scholar 

  23. B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  24. J. Y. Jang and M. Cho, Optik (Stuttgart) 127, 844 (2016).

    Article  ADS  Google Scholar 

  25. W. Chen, X. Wang, B. Wang, Y. Wang, Y. Zhang, H. Zhao, and F. Gao, Biomed. Opt. Express 7, 499 (2016).

    Article  Google Scholar 

  26. C. Huang, X. Lu, Y. Jiang, X. Wang, Z. Qiao, and W. Fan, Appl. Opt. 56, 1610 (2017).

    Article  ADS  Google Scholar 

  27. J. Gak, M. Miguez, M. Bremermann, and A. Arnaud, Analog Integr. Circuits Signal Process. 57, 39 (2008).

    Article  Google Scholar 

  28. A. de Marcellis, E. Palange, R. Giuliani, and M. Janneh, in Proceedings of the IEEE Sensors 2014 Conference (2014), p. 1115.

  29. N. D. Boscher, P. Choquet, D. Duday, and S. Verdier, Plasma Process. Polym. 7, 163 (2010).

    Google Scholar 

  30. H. B. Steen and O. I. Sqrensen, Cytometry 14, 115 (1993).

    Article  Google Scholar 

  31. M. Ayat, M. A. Karami, S. Mirzakuchaki, and A. Beheshti-Shirazi, IEEE Trans. Instrum. Meas. 65, 2284 (2016).

    Article  Google Scholar 

  32. S. Bhattacharyya, R. N. Ahmed, B. B. Purkayastha, and K. Bhattacharyya, J. Phys.: Conf. Ser. 759, 012096 (2016).

    Google Scholar 

  33. S. Datta, S. Rajagopalan, S. Lemke, and A. Joshi, Proc. SPIE 9098, 90980Y (2014).

    Article  ADS  Google Scholar 

  34. P. Angelini, F. Blache, C. Caillaud, M. Goix, F. Jorge, K. Mekhazni, J.-Y. Dupuy, and M. Achouche, Int. J. Microw. Wirel. Technol. 8, 437 (2016).

    Article  Google Scholar 

  35. S. N. Rahman, D. Hall, Z. Mei, and Y.-H. Lo, Opt. Lett. 38, 4166 (2013).

    Article  ADS  Google Scholar 

  36. F. G. Cervantes, J. Livas, R. Silverberg, E. Buchanan, and R. Stebbins, Class. Quantum Grav. 28, 094010 (2011).

    Article  ADS  Google Scholar 

  37. A. M. Joshi and G. H. Olsen, in Handbook of Optics: Fundamentals, Techniques, and Design, Ed. by M. Bass (McGraw-Hill, New York, 1995), Chap. 16, p. 16.1.

    Google Scholar 

  38. T. Y. Lin, R. J. Green, and P. B. O’Connor, Rev. Sci. Instrum. 83, 094102 (2012).

    Article  ADS  Google Scholar 

  39. J. W. Jaquay, Exp. Tech. 2, 40 (1977).

    Article  Google Scholar 

  40. Wai-Kai Chen, The Electrical Engineering Handbook (Academic, New York, London, 2004).

    Google Scholar 

  41. F. Vernotte and E. Lantz, Metrologia 52, 222 (2015).

    Article  ADS  Google Scholar 

  42. K. Sindhubala and B. Vijayalakshmi, Int. J. Appl. Eng. Res. 12, 31115 (2016).

    Google Scholar 

  43. Q. Pham, V. Rachim, J. An, and W.-Y. Chung, Appl. Sci. 7, 670 (2017).

    Article  Google Scholar 

  44. Z. Shen, J. J. Thomas, G. Siuzdak, and R. D. Blackledge, J. Forensic Sci. 49, 1028 (2004).

    Article  Google Scholar 

  45. B. Cletus, W. Olds, P. M. Fredericks, E. Jaatinen, and E. L. Izake, J. Forensic Sci. 58, 1008 (2013).

    Article  Google Scholar 

  46. T. Kim, M. Rylander, E. J. Powers, W. M. Grady, and A. Arapostathis, in Proceedigns of the IEEE Instrumentation and Measurement Technology Conference, 2008, p. 1920.

  47. H. Zumbahlen, Linear Circuit Design Handbook (Newnes/Elsevier, Newton, MA, 2008).

    Google Scholar 

  48. K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, J. Phys. Chem. C 119, 2231 (2015).

    Article  Google Scholar 

  49. M. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2011).

    Article  Google Scholar 

  50. B. Kovalenko, M. Roskosky, B. A. Freedman, and M. S. Shuler, Trauma Treat. 2015, 911 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The Ministry of Education and Science of the Russian Federation, grant no. 14.587.21.0039 (ID RFMEFI58717X0039), supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Kuzishchin.

Additional information

International Conference “PCNSPA 2018—Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications,” Saint Petersburg, Russia, June 4–8, 2018.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzishchin, Y.A., Martynov, I.L., Osipov, E.V. et al. Optimization of Excitation and Detection Modes to Detect Ultra-Small Amounts of Semiconductor Quantum Dots Based on Cadmium Selenide. Opt. Spectrosc. 125, 760–764 (2018). https://doi.org/10.1134/S0030400X18110176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18110176

Navigation