Skip to main content
Log in

Study of Anti-Stokes Luminescence of ZBLAN:Нo3+ Ceramics Excited at 1908 nm

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Visualization of IR radiation of a Tm:YLF laser with a wavelength of 1908 nm in 53ZrF4–20BaF2–3LaF3–1HoF3–3AlF3–20NaF (mol %) ceramic samples is studied. The luminescence spectra of Но3+-doped ZBLAN ceramics exhibit bands in the regions of 540, 650, and 900 nm, which correspond to the 5S2 → 5I8, 5F55I8, and 5I55I8 transitions, the red band (650 nm) being most intense. The population of the upper levels of these transitions can be explained using the cascade excitation mechanism. A visualization model is developed based on balance equations for populations of the upper energy states of Но3+ ions. The population distributions are numerically estimated as functions of the excitation intensity. The obtained time dependences of the populations of the 5S2 and 5F5 states correlate with the experimental time dependences of the luminescence intensity at the 5S25I8 and 5F55I8 transitions upon pulsed excitation. The threshold power density of a Tm:YLF laser at which luminescence of the ceramic samples was observed was ~2 W/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, Quantum Electron. 44, 602 (2014). doi 10.1070/QE2014v044n06ABEH015423

    Article  ADS  Google Scholar 

  2. A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, Laser Phys. Lett. 14, 076003 (2017). doi 10.1088/1612-202X/aa7418

    Article  ADS  Google Scholar 

  3. A. P. Savikin, A. S. Egorov, A. V. Budruev, and I. A. Grishin, Opt. Spectrosc. 120, 902 (2016). doi 10.1134/S0030400X16060199

    Article  ADS  Google Scholar 

  4. A. P. Savikin, A. S. Egorov, A. V. Budruev, I. Yu. Perunin, and I. A. Grishin, Tech. Phys. Lett. 42, 1083 (2016). doi 10.21883/pjtf.2016.21.43840.16262

    Article  ADS  Google Scholar 

  5. A. P. Savikin, A. S. Egorov, A. V. Budruev, and I. A. Grishin, Russ. J. Appl. Chem. 89, 337 (2016). doi 10.1134/S1070427216020270

    Article  Google Scholar 

  6. I. Kaplan, D. Aravot, S. Giler, Y. Gat, D. Sagie, and Y. Kagan, in Laser Optoelectronics in Medicine (Springer, Berlin, 1988), p. 23.

    Google Scholar 

  7. R. Brinkmann, A. Knipper, G. Dröge, A. Miller, B. Gromoll, and R. Birngruber, in Laser in Medicine (Springer, Berlin, 1996), p. 16.

    Google Scholar 

  8. S. Wenk, S. Furst, V. Danicke, and D. Th. Kunde, in Advances in Medical Engineering, Ed. by T. M. Buzug, V. Holz, J. Bongartz, M. Kohl-Bareis, U. Hartmann, and S. Weber (Springer, Berlin, 2007), Vol. 114, p. 447.

    Google Scholar 

  9. B. M. Walsh, Laser Phys. 19, 855 (2009). doi 10.1134/S1054660X09040446

    Article  ADS  Google Scholar 

  10. F. Duclos and P. Urquhart, J. Opt. Soc. Am. B 12, 709 (1995). doi 10.1364/JOSAB.12.000709

    Article  ADS  Google Scholar 

  11. S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, Appl. Phys. Lett. 67, 1815 (1995). doi 10.1063/1.115412

    Article  ADS  Google Scholar 

  12. F. A. Bol’shchikov, E. A. Garibin, P. E. Gusev, A. A. Demidenko, M. V. Kruglova, M. A. Krutov, and P. P. Fedorov, Quantum Electron. 41, 193 (2011). doi 10.1070/QE2011v041n03ABEH014535

    Article  ADS  Google Scholar 

  13. S. Aasland and T. Grande, J. Am. Ceram. Soc. 79, 2205 (1996). doi 10.1111/j.1151-2916.1996.tb08961.x

    Article  Google Scholar 

  14. F. A. Santos, J. R. J. Delben, A. A. S. T. Delben, L. H. C. Andrade, and S. M. Lima, J. Non-Cryst. Solids 357, 2907 (2011). doi 10.1016/j.jnoncrysol.2011.03.032

    Article  ADS  Google Scholar 

  15. L. Qin, Z. X. Shen, B. L. Low, H. K. Lee, T. J. Lu, Y. S. Dai, S. H. Tang, and M. H. Kuok, J. Raman Spectrosc. 28, 495 (1997). doi 10.1002/(SICI)1097-4555(199707)28:7<495::AID-JRS116>3.0.CO;2-X

    Article  ADS  Google Scholar 

  16. C. J. Alvarez, Y. Liu, R. L. Leonard, J. A. Johnson, and A. K. Petford-Long, J. Am. Ceram. Soc. 96, 3617 (2013). doi 10.1111/jace.12540

    Article  Google Scholar 

  17. V. V. Ovsyankin and P. P. Feofilov, JETP Lett. 4, 317 (1966).

    ADS  Google Scholar 

  18. F. Auzel, C. R. Seances Acad. Sci., Ser. B 262, 1016 (1966).

    Google Scholar 

  19. L. Wetenkamp, G. F. West, and H. Tobben, J. Non-Cryst. Solids 140, 35 (1992). doi 10.1016/S0022-3093(05)80737-9

    Article  ADS  Google Scholar 

  20. A. K. Kazarian, Yu. P. Timofeev, and M. V. Fok, Tr. FIAN 175, 4 (1986).

    Google Scholar 

  21. F. Auzel, Phys. Rev. B 13, 2809 (1976). doi 10.1103/PhysRevB.13.2809

    Article  ADS  Google Scholar 

  22. V. M. Agranovich and M. D. Galanin, Electron Excitation Energy Transfer in Condensed Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Budruev.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savikin, A.P., Perunin, I.Y., Kurashkin, S.V. et al. Study of Anti-Stokes Luminescence of ZBLAN:Нo3+ Ceramics Excited at 1908 nm. Opt. Spectrosc. 125, 487–491 (2018). https://doi.org/10.1134/S0030400X18100211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18100211

Keywords

Navigation