Skip to main content
Log in

The Effect of Pulsed Laser Radiation on a Si Layer with a High Dose of Implanted Ag+ Ions

  • PLASMONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

With the purpose of creating a thin composite layer of Ag:Si containing Ag nanoparticles (NPs), the effect of a nanosecond pulse produced by ruby laser (λ = 0.694 µm) on single-crystal c-Si implanted with a high dose of Ag+ ions is studied. The pulsed laser annealing (PLA) is carried out with an energy density exceeding the melting threshold of amorphous а-Si (W ≥ 1.2 J/cm2). During the PLA, temporal dynamics of reflectivity R(t) of probing laser radiation (λ = 1.064 µm) from the Ag:Si layer is explored and compared to data on the melt existence time obtained by the computer simulation. The morphology of the surface, crystallinity, and spectral optical reflection R(λ) of Ag:Si layers subject to PLA are studied. PLA is found to cause melting and subsequent crystallization of the implanted а-Si with ion-synthesized Ag NPs. In addition, a decrease of the surface roughness from 9 to 3–4 nm and redistribution of Ag NP sizes into two fractions—fine (5–15 nm) and larger (40–60 nm)—are observed. The weakening of plasmon intensity Ag NPs in Si (λmax = 835 nm) is observed in R(λ) spectra of an Ag:Si layer after PLA as compared with the initial implanted surface. This weakening may be caused by a decrease in concentration of Ag atoms in the immediate proximity to the surface as a result of Ag impurity partial diffusion within the melted layer, as well as Ag partial evaporation during the PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Garcia, J. Phys. D: Appl. Phys. 44, 283001 (2011).

    Article  Google Scholar 

  2. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).

    Article  ADS  Google Scholar 

  3. T. D. Dzhafarov, A. M. Pashaev, B. G. Tagiev, S. S. Aslanov, S. H. Ragimov, and A. A. Aliev, Adv. Nano Res. 3, 133 (2015).

    Article  Google Scholar 

  4. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Science (Washington, DC, U. S.) 332, 702 (2011).

    Article  ADS  Google Scholar 

  5. W. Li, X. Xiao, Z. Dai, W. Wu, L. Cheng, F. Mei, X. Zhang, and C. Jiang, J. Phys.: Condens. Matter 28, 254003 (2016).

    ADS  Google Scholar 

  6. V. V. Vorob’ev, A. M. Rogov, Yu. N. Osin, N. N. Brandt, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov, Opt. Spectrosc. 124, 649 (2018).

    Article  ADS  Google Scholar 

  7. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).

  8. P. Spinelli and A. Polman, Opt. Express 20, A641 (2012).

    Article  ADS  Google Scholar 

  9. A. L. Stepanov, V. V. Vorobev, V. I. Nuzhdin, V. F. Valeev, and Yu. N. Osin, J. Appl. Spectrosc. 84, 785 (2017).

    Article  ADS  Google Scholar 

  10. V. M. Glazov and V. S. Zemskov, Physical and Chemical Foundations of Doping of Semiconductors (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  11. A. L. Stepanov, A. A. Trifonov, Y. N. Osin, V. F. Va-leev, and V. I. Nuzhdin, Optoelectron. Adv. Mater. Rapid Commun. 7, 692 (2013).

    Google Scholar 

  12. H. W. Seo, Q. Y. Chen, I. A. Rusakova, Z. H. Zhang, D. Wijesundera, S. W. Yeh, X. M. Wang, L. W. Tu, N. J. Ho, Y. G. Wu, H. X. Zhang, and W. K. Chu, Nucl. Instrum. Methods Phys. Res., Sect. B 292, 50 (2012).

    Google Scholar 

  13. M. S. Dhoubhadel, W. J. Lakshantha, S. Lightbourne, F. D’Souza, B. Rout, and F. D. McDaniel, AIP Conf. Proc. 1671, 020003 (2015).

    Article  Google Scholar 

  14. U. Wahl, J. G. Correia, and A. Vantomme, Nucl. Instrum. Methods Phys. Res., Sect. B 190, 543 (2002).

    Google Scholar 

  15. A. V. Dvurechenskii, G. A. Kachuring, E. V. Nidaev, and L. S. Smirnov, Pulse Annealing of Semiconductor Materials (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  16. V. V. Bazarov, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov, Vacuum 148, 254 (2018).

    Article  ADS  Google Scholar 

  17. H. A. Novikov, R. I. Batalov, R. M. Bayazitov, I. A. Faizrakhmanov, G. D. Ivlev, and S. L. Prokop’ev, Tech. Phys. 60, 406 (2015).

  18. W. Szyszko, Appl. Surf. Sci. 90, 325 (1995).

    Article  ADS  Google Scholar 

  19. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).

    Article  ADS  Google Scholar 

  20. A. A. Samarskii, The Theory of Differential Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

  21. H. A. Novikov, R. M. Bayazitov, R. I. Batalov, I. A. Faizrakhmanov, G. D. Ivlev, and S. L. Prokop’ev, Solid State Phenom. 247, 24 (2016).

    Article  Google Scholar 

  22. E. I. Gatskevich, G. D. Ivlev, and A. M. Chaplanov, Quantum Electron. 25, 774 (1995).

    Article  ADS  Google Scholar 

  23. A. G. Cullis, H. C. Webber, J. M. Poate, and N. G. Chew, J. Microsc. 118, 41 (1980).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper was supported by the Russian Science Foundation, project no. 17-12-01176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Batalov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batalov, R.I., Vorobev, V.V., Nuzhdin, V.I. et al. The Effect of Pulsed Laser Radiation on a Si Layer with a High Dose of Implanted Ag+ Ions. Opt. Spectrosc. 125, 571–577 (2018). https://doi.org/10.1134/S0030400X18100065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18100065

Keywords

Navigation