Skip to main content
Log in

The Energy Spectrum and Optical Properties of Fullerene C70 within the Hubbard Model

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The energy spectrum of fullerene C70 is calculated within the Hubbard model in the mean-field approximation. Using group-theory methods, irreducible representations are determined that correspond to the energy states, as well as allowed transitions in the energy spectrum of fullerene C70. On the basis of this spectrum, an interpretation of experimentally observed optical absorption bands of fullerene C70 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. D. R. McKenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo, Nature 355, 622 (1992).

    Article  ADS  Google Scholar 

  3. P. W. Fowler, Contemp. Phys. 37, 235 (1996).

    Article  ADS  Google Scholar 

  4. H. W. Kroto, Nature 329, 529 (1987).

    Article  ADS  Google Scholar 

  5. E. Huckel, Z. Phys. 69, 423 (1930).

    Article  ADS  Google Scholar 

  6. V. I. Minkin, B. Ya. Simkin, and P. M. Minyaev, The Theory of Molecule Structure (Feniks, Rostov-on-Don, 1997) [in Russian].

    Google Scholar 

  7. A. A. Levin, Introduction to Solid State Quantum Chemistry (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  8. R. A. Harris and L. M. Falicov, J. Chem. Phys. 51, 5034 (1969).

    Article  ADS  Google Scholar 

  9. T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blugel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  10. S. Chakravarty, M. Gelfand, and S. Kivelson, Science 254, 970 (1991).

    Article  ADS  Google Scholar 

  11. R. O. Zaitsev, JETP Lett. 95, 380 (2012).

    Article  ADS  Google Scholar 

  12. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  13. D. I. Khomskii, Fiz. Met. Metalloved. 29, 31 (1970).

    Google Scholar 

  14. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Collectivized Electrons (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  15. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 1, 168 (2015).

    Google Scholar 

  16. A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).

    Article  ADS  Google Scholar 

  17. A. V. Silant’ev, Russ. Phys. J. 56, 192 (2013).

    Article  Google Scholar 

  18. P. G. J. van Dongen, Phys. Rev. Lett. 67, 757 (1991).

    Article  ADS  Google Scholar 

  19. A. V. Silant’ev, Russ. Phys. J. 57, 1491 (2014).

    Article  Google Scholar 

  20. M. Kohno, Phys. Rev. B 55, 1435 (1997).

    Article  ADS  Google Scholar 

  21. A. M. Oles, Phys. Rev. B 28, 327 (1983).

    Article  ADS  Google Scholar 

  22. G. S. Ivanchenko and N. G. Lebedev, Phys. Solid State 49, 189 (2007).

    Article  ADS  Google Scholar 

  23. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 1, 101 (2016).

    Google Scholar 

  24. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 3, 103 (2016).

    Google Scholar 

  25. A. V. Silant’ev, Phys. Met. Metallogr. 118, 1 (2017).

    Article  ADS  Google Scholar 

  26. S. V. Tyablikov, Methods of Magnetism Quantum Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  27. M. Bühl and A. Hirsch, Chem. Rev. 101, 1153 (2001).

    Article  Google Scholar 

  28. K. Nakao, N. Kurita, and M. Fujita, Phys. Rev. B 49, 11415 (1994).

    Article  ADS  Google Scholar 

  29. K. Hedberg, L. Hedberg, M. Buhl, D. S. Bethune, C. A. Brown, and R. D. Johnson, J. Am. Chem. Soc. 119, 5314 (1997).

    Article  Google Scholar 

  30. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  31. I. G. Kaplan, Symmetry of Many-Electron Systems (Nauka, Moscow, 1969; Academic, New York, 2013).

    Google Scholar 

  32. P. F. Coheur, M. Carleer, and R. Colin, J. Phys. B: At., Mol. Opt. Phys. 29, 4987 (1996).

    Article  ADS  Google Scholar 

  33. J. P. Hare, H. W. Kroto, and R. Taylor, Chem. Phys. Lett. 177, 394 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Original Russian Text © A.V. Silant’ev, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 159–166.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. The Energy Spectrum and Optical Properties of Fullerene C70 within the Hubbard Model. Opt. Spectrosc. 124, 155–162 (2018). https://doi.org/10.1134/S0030400X18020157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020157

Navigation