Skip to main content
Log in

Study of IR spectra of a polymineral natural association of phyllosilicate minerals

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The IR spectrum of a sample from a polymineral natural association of phyllosilicate minerals (clays from the Millerovskoe deposit, Russian Federation) has been analyzed. Calculations are performed by the method of density functional theory with allowance for the real crystallographic features of the compounds entering the sample composition, which were found using methods of structural analysis. The detailed analysis of IR spectra made it possible to find an unambiguous correlation between the absorption bands and corresponding vibrational modes of individual minerals entering the association. It is shown that the widths of vibrational spectral components can be integrally estimated by expanding the IR spectrum of the association in spectra of individual minerals using phase analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Mccabe and J. M. Adams, Dev. Clay Sci. 5, 491 (2013).

    Article  Google Scholar 

  2. F. R. Araújo, J. G. Baptista, L. Marçal, K. J. Ciuffia, E. J. Nassara, P. S. Calefia, M. A. Vicenteb, R. Trujillanob, V. Rivesb, A. Gilc, S. Korilic, and E. H. de Fariaa, Catal. Today 227, 105 (2014).

    Article  Google Scholar 

  3. Y. Zhao, X. Gu, S. Gao, J. Geng, and X. Wang, Geoderma 183–184, 12 (2012).

    Article  Google Scholar 

  4. Q. Wu, Z. Li, and H. Hong, Appl. Clay Sci. 74, 66 (2013).

    Article  ADS  Google Scholar 

  5. R. Zhu, Q. Chen, H. Liu, F. Geb, L. Zhuc, J. Zhua, and H. Hea, Appl. Clay Sci. 88–89, 33 (2014).

    Article  Google Scholar 

  6. L. F. B. L. Pontes, J. E. G. de Souza, A. Galembeck, and C. P. de Meloe, Sens. Actuators B Chem. 177, 1115 (2013).

    Article  Google Scholar 

  7. R. G. B. Bouwe, I. K. Tonle, S. Letaief, E. Ngamenia, and C. Detellierc, Appl. Clay Sci. 52, 258 (2011).

    Article  Google Scholar 

  8. Y. P. Dong, Y. Ding, Y. Zhou, J. Chena, and C. Wangb, J. Electroanal. Chem. 717–718, 206 (2014).

    Article  Google Scholar 

  9. K. Dedková, K. Matejová, J. Lang, P. Peikertová, K. Kutláková, L. Neuwirthová, K. Frydrýšek, and J. Kukutschová, J. Photochem. Photobiol. B 135, 17 (2014).

    Article  Google Scholar 

  10. G.-F. Cao, Y. Sun, J.-G. Chen, L.-P. Songa, J.-Q. Jianga, Z.-T. Liua, and Z.-W. Liua, Appl. Clay Sci. 93–94, 102 (2014).

    Article  Google Scholar 

  11. M. I. Carretero and M. Pozo, Appl. Clay Sci. 47, 171 (2010).

    Article  Google Scholar 

  12. J. Njuguna, K. Pielichowski, and H. Zhu, Health and Environmental Safety of Nanomaterials (Woodhead, 2014).

    Google Scholar 

  13. M. I. Carretero, C. S. F. Gomes, and F. Tateo, Dev. Clay Sci. 5, 711 (2013).

    Article  Google Scholar 

  14. S. Roselli, N. Bellotti, C. Deyá, M. Revuelta, B. del Amo, and R. Romagnoli, J. Rare Earths 32, 352 (2014).

    Article  Google Scholar 

  15. M. Samuels, O. Mor, and G. Rytwo, J. Photochem. Photobiol. B 121, 23 (2013).

    Article  Google Scholar 

  16. J. A. Junkes, P. B. Prates, D. Hotza, and A. M. Segadãesb, Appl. Clay Sci. 69, 50 (2012).

    Article  Google Scholar 

  17. G. E. Christidis, Dev. Clay Sci. 5, 425 (2013).

    Article  Google Scholar 

  18. B. Campos, J. Aguilar-Carrillo, M. Algarra, M. A. Gonçalvesb, E. Rodríguez-Castellónc, J. C. G. Esteves da Silvad, and I. Bobos, Appl. Clay Sci. 85, 53 (2013).

    Article  Google Scholar 

  19. R. Dohrmann, S. Kaufhold, and B. Lundqvist, Dev. Clay Sci. 5, 677 (2013).

    Article  Google Scholar 

  20. M. M. Fernandes, B. Baeyens, and C. Beaucaire, Radionuclide Behaviour in the Natural Environment, Ed. by C. Poinssot and H. Geckeis (Woodhead, 2012), p. 261.

  21. S. M. Lee and D. Tiwari, Appl. Clay Sci. 59–60, 84 (2012).

    Article  Google Scholar 

  22. G. D. Yuan, B. K. G. Theng, G. J. Churchman, and G. Yuanc, Dev. Clay Sci. 5, 587 (2013).

    Article  Google Scholar 

  23. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

  25. J. Ortega-Castro, N. Hernández-Haro, D. Muñoz-Santiburcio, A. Hernández-Laguna, and C. I. Sainz-Díaz, J. Mol. Struct.: THEOCHEM 912, 82 (2009).

    Article  Google Scholar 

  26. E. Scholtzováa, D. Tunegab, J. Madejováa, H. Pálkováa, and P. Komadela, Vib. Spectrosc. 66, 123 (2013).

    Article  Google Scholar 

  27. M.-C. He, J. Zhao, and S.-X. Wang, Appl. Clay Sci. 85, 74 (2013).

    Article  Google Scholar 

  28. V. Timóna, C. S. Praveen, E. Escamilla-Roa, and M. Valant, J. Mol. Graphics Modell. 44, 129 (2013).

    Article  Google Scholar 

  29. T. D. K. Wungua, F. Rusydi, H. Kr. Dipojono, and H. Kasai, Solid State Commun. 152, 1862 (2012).

    Article  ADS  Google Scholar 

  30. V. A. Yavna, A. S. Kasprzhitsky, and G. I. Lazorenko, Advanced Nano- and Piezoelectric Materials and Their Applications, Ed. by I. A. Parinov (Nova Science, 2014), p. 203.

  31. F. Bergaya, B. K. G. Theng, and G. Lagaly, Handbook of Clay Science (Elsevier Science, Amsterdam, 2006).

    Google Scholar 

  32. V. G. Shlykov, Use of Structural Characteristics of Argillaceous Minerals for Estimating Physicochemical Properties of Dispersed Soils (Geoekologiya, Moscow, 2000) [in Russian].

    Google Scholar 

  33. D. D. Eberl, User’s Guide to RockJock. A Program for Determining Quantitative Mineralogy from Powder X-Ray Diffraction Data, U.S. Geological Survey Open-File Report 2003–78.

    Google Scholar 

  34. M. Osacky, M. Geramian, D. G. Ivey, Q. Liu, and T. H. Etsell, Fuel 113, 148 (2013).

    Article  Google Scholar 

  35. T. F. Bristow, M. J. Kennedy, K. D. Morrison, and D. D. Mrofka, Geochim. Cosmochim. Acta 90, 64 (2012).

    Article  ADS  Google Scholar 

  36. A. N. Hopersky and V. A. Yavna, Scattering of Photons by Many-Electron Systems (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  37. A. M. Nadolinsky, V. A. Yavna, A. N. Khopersky, and A. S. Kasprzhitskii, Opt. Spectrosc. 105 (6), 812 (2008).

    Article  ADS  Google Scholar 

  38. P.-E. Werner, L. Eriksson, and M. J. Westdahl, Appl. Crystallogr. 18, 367 (1985).

    Article  Google Scholar 

  39. J. W. Visser, J. Appl. Crystallogr. 2, 89 (1969).

    Article  Google Scholar 

  40. A. Boultif and D. J. Louër, Appl. Crystallogr. 24, 987 (1991).

    Article  Google Scholar 

  41. M. J. Neumann, Appl. Crystallogr. 36, 356 (2003).

    Article  Google Scholar 

  42. D. Ikuta, N. Kawame, S. Banno, T. Hirajima, K. Ito, J. F. Rakovan, R. T. Downs, and O. Tamada, Am. Mineral. 92, 57 (2007).

    Article  Google Scholar 

  43. A. F. Gualtieri, J. Appl. Crystallogr. 33, 267 (2000).

    Article  Google Scholar 

  44. K. Kihara, Eur. J. Mineral. 2, 63 (1990).

    Article  Google Scholar 

  45. D. Gournis, A. Lappas, M. A. Karakassides, D. Tobbens, and A. Moukarika, Phys. Chem. Miner. 35, 49 (2008).

    Article  ADS  Google Scholar 

  46. A. Viani, A. Gualtieri, and G. Artioli, Am. Mineral. 87, 966 (2002).

    Google Scholar 

  47. V. A. Drits, B. B. Zviagina, D. K. McCarty, and A. L. Salyn, Am. Mineral. 95, 348 (2010).

    Article  Google Scholar 

  48. D. L. Bish and R. B. Von Dreele, Clays Clay Miner. 37, 289 (1989).

    Article  ADS  Google Scholar 

  49. P. Ballirano, A. Maras, F. Marchetti, S. Merlino, and N. Perchiazzi, Powder Diffr. 13, 44 (1998).

    Article  ADS  Google Scholar 

  50. A. V. Chichagov, A. B. Belonozhko, A. L. Lopatin, T.N. Dokina, O. L. Samokhvalova, T. V. Ushakovskaya, and Z. V. Shilova, Kristallografiya 35 (3), 610 (1990).

    Google Scholar 

  51. T. B. Kimetach and K. V. Ponkratov, Techniques of Preparing Tests for IR Fourier Spectroscopy Study: Methodical Reccomendations (EKTs MVD RF, 1997) [in Russian].

    Google Scholar 

  52. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkrytye Sist., No. 7, 36 (2012).

    Google Scholar 

  53. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Nezamzadeh-Ejhieh and A. Shirzadi, Chemosphere 107, 136 (2014).

    Article  Google Scholar 

  55. R. Chester and H. Elderfield, Chem. Geol. 7, 97 (1971).

    Article  Google Scholar 

  56. V. C. Farmer, The Infrared Spectra of Minerals, Ed. by V. C. Farmer (Mineralogical Society, London, 1974), p. 331.

  57. F. A. Yitagesu, F. van der Meer, H. van der Werff, and C. Hecker, Appl. Clay Sci. 53, 581 (2011).

    Article  Google Scholar 

  58. S. M. Antao, I. Hassan, J. Wang, P. L. Lee, and B. H. Toby, Can. Mineral. 46, 1501 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Yavna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavna, V.A., Kasprzhitskii, A.S., Lazorenko, G.I. et al. Study of IR spectra of a polymineral natural association of phyllosilicate minerals. Opt. Spectrosc. 118, 529–536 (2015). https://doi.org/10.1134/S0030400X15040220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15040220

Keywords

Navigation