Skip to main content
Log in

Two-atom van der Waals interaction between polarizable/magnetizable atoms near magnetoelectric bodies

  • Nanophotonics, van der Waals Interactions, and Casimir-Polder Forces
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The van der Waals potential of two atoms in the presence of an arbitrary arrangement of dispersing and absorbing magnetoelectric bodies is studied. Starting from a polarizable atom placed within a given geometry, its interaction with a second polarizable/magnetizable atom is deduced from its Casimir-Polder interaction with a weakly polarizable/magnetizable test body. The general expressions for the van der Waals potential obtained thusly are illustrated by considering first the case of two atoms in free space, with special emphasis on the interaction between (i) two polarizable atoms and (ii) a polarizable and a magnetizable atom. Furthermore, the influence of magnetoelectric bodies on the van der Waals interaction is studied in detail for the example of two atoms placed near a perfectly reflecting plate or a magnetoelectric half space, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London, Z. Phys. 63, 245 (1930); Z. Phys. Chem. Abt. B 11, 222 (1930).

    Article  ADS  Google Scholar 

  2. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  MATH  ADS  Google Scholar 

  3. L. Rizzuto, R. Passante, and F. Persico, Phys. Rev. A 70, 012107 (2004).

    Google Scholar 

  4. E. A. Power and T. Thirunamachandran, Phys. Rev. A 51, 3660 (1995).

    Article  ADS  Google Scholar 

  5. Y. Sherkunov, Phys. Rev. A 72, 052703 (2005).

    Google Scholar 

  6. B. W. Ninham and J. Daicic, Phys. Rev. A 57, 1870 (1998).

    Article  ADS  Google Scholar 

  7. H. Wennerström, J. Daicic, and B. W. Ninham, Phys. Rev. A 60, 2581 (1999).

    Article  ADS  Google Scholar 

  8. G. H. Goedecke and R. C. Wood, Phys. Rev. A 60(3), 2577 (1999).

    Article  ADS  Google Scholar 

  9. G. Barton, Phys. Rev. A 64, 032102 (2001).

    Google Scholar 

  10. P. W. Milonni and A. Smith, Phys. Rev. A 53, 3484 (1996).

    Article  ADS  Google Scholar 

  11. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943); B. M. Axilrod, J. Chem. Phys. 17, 1349 (1949); ibid. 19, 719 (1951).

    Article  ADS  Google Scholar 

  12. M. R. Aub and S. Zienau, Proc. R. Soc., London, Ser. A 257, 464 (1960).

    ADS  Google Scholar 

  13. M. Cirone and R. Passante, J. Phys. B 29, 1871 (1996).

    Article  ADS  Google Scholar 

  14. R. Passante, F. Persico, and L. Rizzuto, J. Mod. Opt. 52, 1957 (2005).

    Article  ADS  Google Scholar 

  15. E. A. Power and T. Thirunamachandran, Proc. R. Soc., London, Ser. A 401, 267 (1985).

    Article  ADS  Google Scholar 

  16. E. A. Power and T. Thirunamachandran, Phys. Rev. A 50, 3929 (1994).

    Article  ADS  Google Scholar 

  17. J. Mahanty and B. W. Ninham, J. Phys. A 5, 1447 (1972).

    Article  ADS  Google Scholar 

  18. J. Mahanty and B. W. Ninham, J. Phys. A 6, 1140 (1973).

    Article  ADS  Google Scholar 

  19. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, London, 1976).

    Google Scholar 

  20. M. Boström, J. J. Longdell, and B. W. Ninham, Phys. Rev. A 64, 062702 (2001).

    Google Scholar 

  21. M. Marcovitch and H. Diamant, Phys. Rev. Lett. 95, 223 203 (2005).

    Google Scholar 

  22. M. Cho and R. J. Silbey, J. Chem. Phys. 104 (1996).

  23. G. Feinberg and J. Sucher, J. Chem. Phys. 48, 3333 (1968); E. Lubkin, Phys. Rev. A 4, 416 (1971).

    Article  ADS  Google Scholar 

  24. T. H. Boyer, Phys. Rev. 180(1), 19 (1969).

    Article  ADS  Google Scholar 

  25. G. Feinberg and J. Sucher, Phys. Rev. A 2, 2395 (1970).

    Article  ADS  Google Scholar 

  26. C. Farina, F. C. Santos, and A. C. Tort, J. Phys. A 35, 2477 (2002); Am. J. Phys. 70, 421 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. S. Y. Buhmann, Ho Trung Dung, L. Knöll, and D.-G. Welsch, Phys. Rev. A 70, 052117 (2004).

    Google Scholar 

  28. S. Y. Buhmann, Ho Trung Dung, T. Kampf, and D.-G. Welsch, Eur. Phys. J. D 35, 15 (2005).

    Article  ADS  Google Scholar 

  29. S. Y. Buhmann, H. Safari, D.-G. Welsch, and Ho Trung Dung, Open Sys. Inf. Dyn. 13, 427 (2006).

    Article  MATH  Google Scholar 

  30. H. Safari, S. Y. Buhmann, D.-G. Welsch, and Ho Trung Dung, Phys. Rev. A (2006).

  31. S. Y. Buhmann and D.-G. Welsch, Appl. Phys. B 82(2), 189 (2006).

    Article  ADS  Google Scholar 

  32. L. Knöll, S. Scheel, and D.-G. Welsch, in Coherence and Statistics of Photons and Atoms, Ed. by J. Perina (Wiley, New York, 2001), p. 1.

    Google Scholar 

  33. M. Babiker and G. Barton, J. Phys. A, Math. Gen. 9, 129 (1976).

    Article  ADS  Google Scholar 

  34. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, N.Y., 1995), Secs. 2.1.3, 2.1.4, and 7.4.2.

    Google Scholar 

  35. M. Abramowitz and I. A. Stegun, Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Frankfurt, 1984), Section 9.

    MATH  Google Scholar 

  36. S. Y. Buhmann, D.-G. Welsch, and T. Kampf, Phys. Rev. A 72, 032112 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Buhmann.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhmann, S.Y., Safari, H., Trung Dung, H. et al. Two-atom van der Waals interaction between polarizable/magnetizable atoms near magnetoelectric bodies. Opt. Spectrosc. 103, 374–387 (2007). https://doi.org/10.1134/S0030400X07090068

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07090068

PACS numbers

Navigation