Skip to main content
Log in

Electrothermomechanics of Nonferromagnetic Polarizable Solid Bodies with Regard for the Tensor Nature of the Local Displacements of Mass

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

By using the concept of the local displacements of mass as a measure of the gradient character of mechanical fields, we propose the relations of nonlocal electrothermoelasticity of nonferromagnetic dielectric solids. The theory takes into account the tensor nature of the local displacements of masses. By using the relations of this theory, we deduce a formula for the surface strain energy of dielectric solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Bredov, V. V. Rumyantsev, and I. N. Toptygin, Classical Electrodynamics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  2. Ya. Burak, V. Kondrat, and O. Hrytsyna, Fundamentals of the Local Gradient Theory of Dielectrics [in Ukrainian], Lira, Uzhhorod (2011).

    MATH  Google Scholar 

  3. O. Hrytsyna, “Determination of the surface energy of solids,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 17, 43–54 (2013).

  4. O. Hrytsyna, “On the description of the effect of local mass displacement on shear stresses,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 16, 61–75 (2012).

  5. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

  6. V. F. Kondrat and O. R. Hrytsyna, “Mechanoelectromagnetic interaction in isotropic dielectrics with regard for the local displacement of mass,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 1, 150–158 (2009); English translation: J. Math. Sci., 168, No. 5, 688–698 (2010).

  7. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill, New-York (1961).

    MATH  Google Scholar 

  8. I. G. Marchenko, I. M. Neklyudov, and I. I. Marchenko, “Collective processes of atomic ordering in the process of low-temperature deposition of films,” Dop. Nats. Akad. Nauk Ukr., No. 10, 97–103 (2009).

    Google Scholar 

  9. G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, Elsevier–North-Holland, Amsterdam (1988).

    MATH  Google Scholar 

  10. N. T. Gladkikh, S. V. Dukarov, A. P. Kryshtal,’ V. I. Larin, V. N. Sukhov, and S. I. Bogatyrenko (editors), Surface Phenomena and Phase Transformations in Condensed Films [in Russian], Karazin Kharkov National University, Kharkov (2004).

  11. Ya. S. Podstrigach, “Diffusion theory of inelasticity of metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 67–72 (1965).

  12. L. I. Sedov, Mechanics of Continua [in Russian], Vol. 1, Nauka, Moscow (1976).

    Google Scholar 

  13. Ya. Burak, V. Kondrat, and O. Hrytsyna, “An introduction of the local displacements of mass and electric charge phenomena into the model of the mechanics of polarized electromagnetic solids,” J. Mech. Mater. Struct., 3, No. 6, 1037–1046 (2008).

    Article  Google Scholar 

  14. A. C. Eringen, “Theory of nonlocal piezoelectricity,” J. Math. Phys., 25, No. 3, 717–727 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. C. Eringen, Nonlocal Continuum Field Theories, Springer, New York (2002).

    MATH  Google Scholar 

  16. J. Y. Fu, W. Zhu, N. Li, N. B. Smith, and L. E. Cross, “Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites,” Appl. Phys. Lett., 91, 182910–182910-3 (2007).

  17. V. K. Kalpakides and E. K. Agiasofitou, “On material equations in second gradient electroelasticity,” J. Elasticity, 67, No. 3, 205–227 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kuno, Introduction to Nanoscience and Nanotechnology. A Workbook, University of Notre Dame (2005).

  19. M. S. Majdoub, P. Sharma, and T. Çağin, “Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect,” Phys. Rev, B. 77, No. 12, 125424 (2008).

    Article  Google Scholar 

  20. C. A. Mead, “Anomalous capacitance of thin dielectric structures,” Phys. Rev. Lett., 6, No. 10, 545–546 (1961).

    Article  Google Scholar 

  21. R. D. Mindlin, “Elasticity, piezoelectricity and crystal lattice dynamics,” J. Elasticity, 2, No. 4, 217–282 (1972).

    Article  Google Scholar 

  22. R. D. Mindlin, “Second gradient of strain and surface tension in linear elasticity,” Int. J. Solids Struct., 1, No. 4, 417–438 (1965).

    Article  Google Scholar 

  23. J. P. Nowacki, Static and Dynamic Coupled Fields in Bodies with Piezoeffects or Polarization Gradient, in: E. Pfeiffer and P. Wriggers (editors), Lecture Notes in Applied and Computational Mechanics, Vol. 26 , Springer, New York (2006).

    Google Scholar 

  24. N. D. Sharma, R. Maranganti, and P. Sharma, “On the possibility of piezoelectric nanocomposites without using piezoelectric materials,” J. Mech. Phys. Solids, 55, No. 11, 2328–2350 (2007).

    Article  MATH  Google Scholar 

  25. J. S. Yang and X. M. Yang, “Electric field gradient effect and thin film capacitance,” World J. Eng., 2, 41–45 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 58, No. 3, pp. 112–121, July–September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrytsyna, О.R. Electrothermomechanics of Nonferromagnetic Polarizable Solid Bodies with Regard for the Tensor Nature of the Local Displacements of Mass. J Math Sci 226, 139–151 (2017). https://doi.org/10.1007/s10958-017-3525-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3525-y

Navigation