Skip to main content
Log in

Quantum optics phenomena in atomically doped carbon nanotubes

  • Nanophotonics; Modification of Spontaneous Emission
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Quantum optics phenomena, including light absorbtion and atomic states entanglement, are discussed for carbon nanotubes doped with atoms (ions). It has been shown that, similar to semiconductor microcavities and photonic band-gap materials, carbon nanotubes may qualitatively change the character of the atom-electromagnetic-field interactions, yielding strong atom-field coupling regime with the formation of quasi-one-dimensional atomic polaritons. These may be observed experimentally via the effect of the absorption line splitting (Rabi splitting) in the frequency range close to the atomic transition frequency. A scheme for entangling atomic polaritons is investigated using the photon Green function formalism for quantizing electromagnetic fields in the presence of quasi-one-dimensional absorbing and dispersing media. Small-diameter metallic nanotubes are shown to result in sizable amounts of the two-qubit atomic entanglement with no damping for sufficiently long times, thus challenging novel applications of atomically doped carbon nanotubes in quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Science of Fullerens and Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  2. H. Dai, Surf. Sci. 500, 218 (2002).

    Article  Google Scholar 

  3. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).

    Article  ADS  Google Scholar 

  4. S. G. Chou, F. Plentz, J. Jiang, et al., Phys. Rev. Lett. 94, 127402 (2005).

  5. S. Latil, F. Triozon, and S. Roche, Phys. Rev. Lett. 95, 126802 (2005).

    Google Scholar 

  6. Y.-W. Son, J. Ihm, M. L. Cohen, et al., Phys. Rev. Lett. 95, 216602 (2005).

    Article  ADS  Google Scholar 

  7. L. Duclaux, Carbon 40, 1751 (2002).

    Article  Google Scholar 

  8. H. Shimoda et al., Phys. Rev. Lett. 88, 015502 (2002).

  9. G.-H. Jeong et al., Phys. Rev. B 68, 075410 (2003); Thin Solid Films 435, 307 (2003); M. Khazaei et al., J. Phys. Chem. B 108, 15 529 (2004).

  10. M. M. Calbi et al., Rev. Mod. Phys. 73, 857 (2001).

    Article  ADS  Google Scholar 

  11. S. M. Huang, B. Maynor, X. Y. Cai, and J. Liu, Advanced Materials, 15, 1651 (2003); L. Zheng et al., Nature Materials, 3, 673 (2004).

    Article  Google Scholar 

  12. I. V. Bondarev et al., Phys. Rev. Lett. 89, 115 504 (2002).

  13. I. V. Bondarev and Ph. Lambin, Phys. Rev. B 70, 035407 (2004); Phys. Lett. A 328, 235 (2004).

  14. I. V. Bondarev and Ph. Lambin, Phys. Rev. B 72, 035451 (2005); Solid State Commun. 132, 203 (2004).

    Google Scholar 

  15. I. V. Bondarev and Ph. Lambin, in: Trends in Nanotubes Research (Nova Science, New York, 2006).

    Google Scholar 

  16. L. C. Andreani, G. Panzarini, and J.-M. Gérard, Phys. Rev. B 60, 13276 (1999).

    Google Scholar 

  17. A. S. Davydov, Quantum Mechanics (NEO, Ann Arbor, 1967).

    Google Scholar 

  18. J. P. Reithmaier et al., Nature 432, 197 (2004); T. Yoshie et al., Nature 432, 200 (2004); E. Peter et al., Phys. Rev. Lett. 95, 067 401 (2005).

    Article  ADS  Google Scholar 

  19. S. Hughes, Phys. Rev. Lett. 94, 227 402 (2005).

    Google Scholar 

  20. A. S. Sørensen et al., Phys. Rev. Lett. 92, 063601 (2004).

  21. T. Brandes, Phys. Rep. 408, 315 (2005).

    Article  ADS  Google Scholar 

  22. J. I. Cirac et al., Phys. Rev. Lett. 78, 3221 (1997).

    Article  ADS  Google Scholar 

  23. H. T. Dung et al., J. Opt. B 4, S169 (2002).

    Google Scholar 

  24. A. Jorio et al., Phys. Rev. B 65, 121402R (2002).

  25. W. Heitler, The Quantum Theory of Radiation (Clarendon, Oxford, 1954).

    MATH  Google Scholar 

  26. S. J. Tans et al., Nature 386, 474 (1997).

    Article  ADS  Google Scholar 

  27. W. K. Wooters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bondarev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, I.V. Quantum optics phenomena in atomically doped carbon nanotubes. Opt. Spectrosc. 103, 366–373 (2007). https://doi.org/10.1134/S0030400X07090056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07090056

PACS numbers

Navigation