Skip to main content
Log in

Upregulation of MHC I Antigen Processing Machinery Gene Expression in Breast Cancer Cells by Trichostatin A

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Epigenetic alterations associated with cancer have been shown to facilitate tumorigenesis and promote metastasis. In the study of cancer metastasis, epigenetics has been revealed to play a crucial role in supporting tumour immune evasion. As a result, epigenetic drugs have been identified as potential agents to activate anti-tumour immune responses and reverse tumour immunologically tolerant states. Mounting evidence is showing aberrant expression of MHC class I antigen processing molecules in cancers and their upregulation as a potential indicator for anti-tumour immunity. In this study, we demonstrate that the epigenetic drug Trichostatin A (TSA), a histone deacetylase inhibitor, can restore MHC I antigen presentation machinery (MHC I APM) genes in human breast cancer cells (MCF-7). Treatment with TSA resulted in the upregulation of MHC I, B2M, and PSMB9 in MCF-7 monolayer cells, and MHC I, B2M, PSMB9, PSMB8, TAP1, and TAP2 in MCF-7 spheroid cells. Interestingly, treatment with TSA also increased CD274 expression in these cells and enhanced the invasion ability of the MCF-7 spheroid. This aggressive behaviour was confirmed by increased expression of metastatic-related genes, nNav1.5 and MMP1. In summary, although the restoration of MHC I APM expression was achieved by TSA, the upregulation of metastatic genes and CD274 also enhanced the invasion ability of breast cancer cells. These findings suggest the need for careful consideration when utilizing epigenetic drugs for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Reeves E., James E. 2017. Antigen processing and immune regulation in the response to tumours. Immunology. 150, 16‒24.

    Article  CAS  PubMed  Google Scholar 

  2. Juneja V.R., McGuire K.A., Manguso R.T., LaFleur M.W., Collins N., Haining W.N., Freeman G.J., Sharpe A.H. 2017. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895‒904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akinleye A., Rasool Z. 2019. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 12, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pedersen M.H., Hood B.L., Beck H.C., Conrads T.P., Ditzel H.J., Leth-Larsen R. 2017. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology. 6, e1305531.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park H.S., Cho U., Im S.Y., Yoo C.Y., Jung J.H., Suh Y.J., Choi H.J. 2019. Loss of human leukocyte antigen class i expression is associated with poor prognosis in patients with advanced breast cancer. J. Pathol. Transl. Med. 53, 75‒85.

    Article  PubMed  Google Scholar 

  6. Han S-H., Kim M., Chung Y.R., Woo J.W., Choi H.Y., Park S.Y. 2022. Expression of HLA class I is associated with immune cell infiltration and patient outcome in breast cancer. Sci. Rep. 12, 20367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leone P., Shin E-C., Perosa F.,Vacca A., Dammacco F., Racanelli V. 2013. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells. J. Natl. Cancer Inst. 105, 1172−1187.

    Article  CAS  PubMed  Google Scholar 

  8. Chen B., Zhu H., Yang B., Cao J. 2022. The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm. Sin. B. 13 (5), 1976‒1989.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ferrington D.A., Gregerson D.S. 2012. Immunoproteasomes: Structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 109, 75‒112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee M., Song I.H., Heo S-H., Kim Y.A., Park I.A., Bang W.S., Park H.S., Gong G., Lee H.J. 2019. Expression of immunoproteasome subunit LMP7 in breast cancer and its association with immune-related markers. Cancer Res. Treat. 51, 80‒89.

    Article  CAS  PubMed  Google Scholar 

  11. Shashova E.E., Lyupina Y.V., Glushchenko S.A., Slonimskaya E.M., Savenkova O.V., Kulikov A.M., Gornostaev N.G., Kondakova I.V., Sharova N.P. 2014. Proteasome functioning in breast cancer: Connection with clinical-pathological factors. PLoS One. 9, e109933.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen D., Jin C., Dong X., Wen J., Xia E., Wang Q., Wang O. 2021. Pan-cancer analysis of the prognostic and immunological role of PSMB8. Sci. Rep. 11, 20492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geoffroy K., Araripe S.B., Viens M., Béland D., Bourgeois-Daigneault M.-C. 2023. Increased expression of the immunoproteasome subunits PSMB8 and PSMB9 by cancer cells correlate with better outcomes for triple-negative breast cancers. Sci. Rep. 13, 2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehnert E., Tampé R. 2017. Structure and dynamics of antigenic peptides in complex with TAP. Front. Immunol. 8, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li B., Feng Y., Hou Q., Fu Y., Luo Y. 2022. Antigen peptide transporter 1 (TAP1) promotes resistance to MEK inhibitors in pancreatic cancers. Int. J. Mol. Sci. 23, 7168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Attaran N., Coates P.J., Zborayova K., Erdogan B., Magan M., Sgaramella N., Nylander K., Gu X. 2022. Antigen peptide transporters are upregulated in squamous cell carcinoma of the oral tongue and show sex‑specific associations with survival. Oncol. Lett. 24, 390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henle A.M., Nassar A., Puglisi-Knutson D., Youssef B., Knutson K.L. 2017. Downregulation of TAP1 and TAP2 in early stage breast cancer. PLoS One. 12, e0187323.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaklamanis L., Leek R., Koukourakis M., Gatter K.C., Harris A.L. 1995. Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Res. 55, 5191‒5194.

    CAS  PubMed  Google Scholar 

  19. Li L., Dong M., Wang X.G. 2016. The implication and significance of beta-2-microglobulin: A conservative multifunctional regulator. Chin. Med. J. 129, 448‒455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H., Liu B., Wei J. 2021. Beta-2-microglobulin (B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett. 517, 96‒104.

    Article  CAS  PubMed  Google Scholar 

  21. Gettinger S., Choi J., Hastings K., Truini A., Datar I., Sowell R., Wurtz A., Dong W., Cai G., Melnick M.A., Du V.Y., Schlessinger J., Goldberg S.B., Chiang A., Sanmamed M.F., Melero I., Agorreta J., Montuenga L.M., Lifton R., Ferrone S., Kavathas P., Rimm D.L., Kaech S.M., Schalper K., Herbst R.S., Politi K. 2017. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discovery. 7, 1420‒1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H., Cui B., Zhou Y., Wang X., Wu W., Wang Z., Dai Z., Cheng Q., Yang K. 2021. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci. Rep. 11, 5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhatchinamoorthy K., Colbert J.D., Rock K.L. 2021. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 469.

    Article  Google Scholar 

  24. Nepali K., Liou J.-P. 2021. Recent developments in epigenetic cancer therapeutics: Clinical advancement and emerging trends. J. Biomed. Sci. 28, 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu C., Liu X., Zeng Y., Liu J., Wu F. 2021. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clin. Epigenet. 13, 166.

    Article  CAS  Google Scholar 

  26. Shanmugam G., Rakshit S., Sarkar K. 2022. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl. Oncol. 16, 101312.

    Article  CAS  PubMed  Google Scholar 

  27. Choi Y.H. 2005. Induction of apoptosis by trichostatin A, a histone deacetylase inhibitor, is associated with inhibition of cyclooxygenase-2 activity in human non-small cell lung cancer cells. Int. J. Oncol. 27, 473‒479.

    CAS  PubMed  Google Scholar 

  28. Tavakoli-Yaraki M., Karami-Tehrani F., Salimi V., Sirat-i-Sabet M. 2013. Induction of apoptosis by Trichostatin A in human breast cancer cell lines: Involvement of 15-Lox-1. Tumour Biol. 34, 241‒249.

    Article  CAS  PubMed  Google Scholar 

  29. Höring E., Podlech O., Silkenstedt B., Rota I.A., Adamopoulou E., Naumann U. 2013. The histone deacetylase inhibitor Trichostatin A promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Res. 33, 1351‒1360.

    PubMed  Google Scholar 

  30. Meng J., Zhang H.H., Zhou C.X., Li C., Zhang F., Mei Q.B. 2012. The histone deacetylase inhibitor trichostatin A induces cell cycle arrest and apoptosis in colorectal cancer cells via p53-dependent and -independent pathways. Oncol. Rep. 28, 384‒388.

    CAS  PubMed  Google Scholar 

  31. Magner W.J., Kazim A.L., Stewart C., Romano M.A., Catalano G., Grande C., Keiser N., Santaniello F., Tomasi T.B. 2000. Activation of MHC Class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. 165, 7017‒7024.

    Article  CAS  PubMed  Google Scholar 

  32. Ritter C., Fan K., Paschen A., Reker Hardrup S., Ferrone S., Nghiem P., Ugurel S., Schrama D., Becker J.C. 2017. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci. Rep. 7, 2290.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Setiadi A.F., Omilusik K., David M.D., Seipp R.P., Hartikainen J., Gopaul R., Choi K.B., Jefferies W.A. 2008. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 68, 9601‒9607.

    Article  CAS  PubMed  Google Scholar 

  34. Li X., Su X., Liu R., Fang J., Cao L., Feng C., Shang Q., Chen Y., Shao C., Shi Y. 2021. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene. 40, 1836‒1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woods D.M., Sodré A.L., Villagra A., Sarnaik A., Sotomayor E.M., Weber J. 2015. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375‒1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hassel J.C., Berking C., Schlaak M., Schlaak M., Eigentler T., Gutzmer R., Ascierto P.A., Schilling B., Hamm S., Hermann F., Reimann P.G., Schadendorf D. 2021. Results from the phase Ib of the SENSITIZE trial combining domatinostat with pembrolizumab in advanced melanoma patients refractory to prior checkpoint inhibitor therapy. J. Clin. Oncol. 39, 9545.

    Article  Google Scholar 

  37. Kamarulzaman N.S., Dewadas H.D., Leow C.Y., Yaacob N.S., Mokhtar N.F. 2017. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int. 17, 74.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen W., Wong C., Vosburgh E., Levine, A.J., Foran D.J., Xu E.Y. 2014. High-throughput image analysis of tumor spheroids: A user-friendly software application to measure the size of spheroids automatically and accurately. J. Vis. Exp. 89, e51639.

    Google Scholar 

  39. Aulton M.E., Taylor K.M.G. 2013. Aulton’s Pharmaceutics E-Book: The Design and Manufacture of Medicines. 4th ed. London: Elsevier.

    Google Scholar 

  40. Murtadha A.H., Azahar I.I.M., Sharudin N.A., Has A.T.C., Mokhtar N.F. 2021. Influence of nNav1.5 on MHC class I expression in breast cancer. J. Biosci. 46, 70.

    Article  CAS  PubMed  Google Scholar 

  41. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101.

    Article  CAS  PubMed  Google Scholar 

  42. Wan S., Pestka S., Jubin R.G., Lyu Y.L., Tsai Y.C., Liu L.F. 2012. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS One. 7, 32542.

    Article  Google Scholar 

  43. Garrido F., Aptsiauri N., Doorduijn E.M., Garcia-Lora A.M., Van H.T. 2016. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39, 44‒51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshida M., Kijima M., Akita M., Beppu T. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174‒17179.

    Article  CAS  PubMed  Google Scholar 

  45. Beljanski V. 2009. Trichostatin A. In xPharm: The Comprehensive Pharmacology Reference. Enna S.J., Bylund D.B., Eds. New York: Elsevier, pp. 1‒4.

  46. Vigushin D.M., Ali S., Pace P.E. 2001. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. 7, 971‒976.

    CAS  PubMed  Google Scholar 

  47. Wang X., Chen S., Shen T., Lu H., Xiao D., Zhao M., Yao Y., Li X., Zhang G., Zhou X., Jiang X., Cheng Z. 2020. Trichostatin A reverses epithelial-mesenchymal transition and attenuates invasion and migration in MCF-7 breast cancer cells. Exp. Ther. Med. 19, 1687‒1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo L., Zhou Y., Wang S., Wu Y. 2014. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J. Cell. Mol. Med. 18, 2009‒2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joshi R., Castro D.M.M., Piñeyro D., Alvarez-Errico D., Arribas C., Esteller M. 2020. The DNA methylation landscape of human cancer organoids available at the American type culture collection. Epigenetics. 15, 1167‒1177.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen G., Liu W., Yan B. 2022. Breast cancer MCF-7 cell spheroid culture for drug discovery and development. J. Cancer Ther. 13, 117‒130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pengnam S., Plianwong S., Patrojanasophon P., Radchatawedchakoon W., Yingyongnarongkul B.E., Opanasopit P., Charoensuksai P. 2021. Synergistic effect of doxorubicin and siRNA-mediated silencing of MCL-1 using cationic niosomes against 3D MCF-7 spheroids. Pharmaceutics. 13, 550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leung B.M., Lesher-Perez S.C., Matsuoka T., Moraes C., Takayama S. 2015. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater. Sci. 3, 336‒344.

    Article  CAS  PubMed  Google Scholar 

  53. Azahar I.I., Sharudin N.A., Din A.H.M.N., Che Has A.T., Mohd Nafi S.N., Jaafar H., Mokhtar N.F. 2022. nNav1.5 expression is associated with glutamate level in breast cancer cells. Biol. Res. 55, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. House C.D., Wang B-D., Ceniccola K., Williams R., Simaan M., Olender J., Patel V., Baptista-Hon D.T., Annunziata C.M., Gutkind J.S., Hales T.G., Lee N.H. 2015. Voltage-gated Na+ channel activity increases colon cancer transcriptional activity and invasion via persistent MAPK signaling. Sci. Rep. 5, 11541.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gradek F., Lopez-Charcas O., Chadet S., Poisson L., Ouldamer L., Goupille C., Jourdan M.L., Chevalier S., Moussata D., Besson P., Roger S. 2019. Sodium channel nav1.5 controls epithelial-to-mesenchymal transition and invasiveness in breast cancer cells through its regulation by the salt-inducible kinase-1. Sci. Rep. 9, 18652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Insua-Rodríguez J., Oskarsson T. 2016. The extracellular matrix in breast cancer. Adv. Drug Delivery Rev. 97, 41‒55.

    Article  Google Scholar 

  57. Alford A.I., Rannels D.E. 2001. Extracellular matrix fibronectin alters connexin 43 expression by alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L680‒L688.

    Article  CAS  PubMed  Google Scholar 

  58. Pulze L., Congiu T., Brevini T.A.L., Grimaldi A., Tettamanti G., D’Antona P., Baranzini N., Acquati F., Ferraro F., de Eguileor M. 2020. MCF7 spheroid development: New insight about spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int. J. Mol. Sci. 21 (15), 5400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shabalina E.Y., Skorova E.Y., Chudakova D.A., Anikin V.B., Reshetov I.V., Mynbaev O.A., Petersen E.V. 2021. The matrix-dependent 3D spheroid model of the migration of non-small cell lung cancer: A step towards a rapid automated screening. Front. Mol. Biosci. 8, 610407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boo L., Ho W.Y., Ali N.M., Yeap S.K., Ky H., Chan K.G., Yin W.F., Satharasinghe D.A., Liew W.C., Tan S.W., Ong H.K., Cheong S.K. 2016. miRNA transcriptome profiling of spheroid-enriched cells with cancer stem cell properties in human breast MCF-7 cell line. Int. J. Biol. Sci. 12, 427‒445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Audoin M., Søgaard M.T., Jauffred L. 2022. Tumor spheroids accelerate persistently invading cancer cells. Sci. Rep. 12, 14713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kalaora S., Lee J.S., Barnea E., Levy R., Greenberg P., Alon M., Yagel G., Bar Eli G., Oren R., Peri A., Patkar S., Bitton L., Rosenberg S.A., Lotem M., Levin Y., Admon A., Ruppin E., Samuels Y. 2020. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat. Commun. 11, 896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Howe K.L., Achuthan P., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., Bhai J., Billis K., Boddu S., Charkhchi M., Cummins C., Da Rin Fioretto L., Davidson C., Do-diya K., El Houdaigui B., Fatima R., Gall A., G-arcia Giron C., Grego T., Guijarro-Clarke C., Haggerty L., Hemrom A., Hourlier T., Izuogu O.G., Juettemann T., Kaikala V., Kay M., Lavidas I., Le T., Lemos D., Gonzalez Martinez J., Marugán J.C., Maurel T., McMahon A.C., Mohanan S., Moore B., Muffato M., Oheh D.N., Paraschas D., Parker A., Parton A., Prosovetskaia I., Sakthivel M.P., Salam A.I.A., Schmitt B.M., Schuilenburg H. Sheppard D., Steed E., Szpak M., Szuba M., Taylor K., Thormann A., Threadgold G., Walts B., Winterbottom A., Chakiachvili M., Chaubal A., De Silva N., Flint B., Frankish A., Hunt S.E., IIsley G.R., Langridge N., Loveland J.E., Martin F.J., Mudge J.M., Morales J., Perry E., Ruffier M., Tate J., Thybert D., Trevanion S.J., Cunningham F., Yates A.D., Zerbino D.R., Flicek P. 2021. Ensembl 2021. Nucleic Acids Res. 49, D884‒D891.

    Article  CAS  PubMed  Google Scholar 

  64. Xu W.S., Parmigiani R.B., Marks P.A. 2007. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 26, 5541‒5552.

    Article  CAS  PubMed  Google Scholar 

  65. Arons E., Kunin V., Schechter C., Ehrlich R. 2001. Organization and functional analysis of the mouse transporter associated with antigen processing 2 promoter. J. Immunol. 166, 3942‒3951.

    Article  CAS  PubMed  Google Scholar 

  66. Tu Z., Li K., Ji Q., Huang Y., Lv S., Li J., Wu L., Huang K., Zhu X. 2023. Pan-cancer analysis: Predictive role of TAP1 in cancer prognosis and response to immunotherapy. BMC Cancer. 23, 133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alimonti J., Zhang Q-J., Gabathuler R., Reid G., Chen SS., Jefferies W.A. 2000. TAP expression provides a general method for improving the recognition of malignant cells in vivo. Nat. Biotechnol. 18, 515‒520.

    Article  CAS  PubMed  Google Scholar 

  68. Wang C., Wang Z., Yao T., Zhou J., Wang Z. 2022. The immune-related role of beta-2-microglobulin in melanoma. Front. Oncol. 12, 944722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanderson L., Taylor G.W., Aboagye E.O., Alao J.P., Latigo J.R., Coombes R.C., Vigushin D.M. 2004. Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor Trichostatin A after intraperitoneal administration to mice. Drug Metab. Dispos. 32, 1132‒1138.

    Article  CAS  PubMed  Google Scholar 

  70. Rambaran R.N., Serpell L.C. 2008. Amyloid fibrils: Abnormal protein assembly. Prion. 2, 112‒117.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stix B., Kähne T., Sletten K., Raynes J., Roessner A., Röcken C. 2001. Proteolysis of AA amyloid fibril proteins by matrix metalloproteinases-1, -2, and -3. Am. J. Pathol. 159, 561‒570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Natarajan K., Li H., Mariuzza R.A., Margulies D.H. 1999. MHC class I molecules, structure and function. Rev. Immunogenet. 1, 32‒46.

    CAS  PubMed  Google Scholar 

  73. Han Y., Liu D., Li L. 2020. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 10, 727‒742.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shuai C., Yang X., Pan H., Han W. 2020. Estrogen receptor downregulates expression of PD-1/PD-L1 and infiltration of CD8+ T cells by inhibiting IL-17 signaling transduction in breast cancer. Front. Oncol. 10, 582863.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dusenbery A.C., Maniaci J.L., Hillerson N.D., Dill E.A., Bullock T.N., Mills A.M. 2021. MHC Class I loss in triple-negative breast cancer: A potential barrier to PD-1/PD-L1 checkpoint inhibitors. Am. J. Surg. Pathol. 45, 701‒707.

    Article  PubMed  Google Scholar 

  76. Thompson J.C., Davis C., Hwang W.-T., Deshpande C., Jeffries S., Langer C.J., Albelda S.M. 2020. Gene signature of antigen processing and presentation machinery (APM) as highly predictive of response to checkpoint blockade in lung cancer and melanoma. J. Clin. Oncol. 38, 3121‒3121.

    Article  Google Scholar 

  77. Montaño-Samaniego M., Bravo-Estupiñan D.M., Méndez-Guerrero O., Alarcón-Hernández E., Ibáñez-Hernández M. 2020. Strategies for targeting gene therapy in cancer cells with tumor-specific promoters. Front. Oncol. 10, 605380.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge Yayasan Khazanah for the postgraduate financial support and the highest gratitude to the personnel of the Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, for technical assistance.

Funding

Ministry of Higher Education, Malaysia—Fundamental Research Grant Scheme (Reference Code: FRGS/1/2018/ SKK08/USM/03/2) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Mokhtar.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtadha, A.H., Sharudin, N.A., Azahar, I.I. et al. Upregulation of MHC I Antigen Processing Machinery Gene Expression in Breast Cancer Cells by Trichostatin A. Mol Biol 57, 1212–1227 (2023). https://doi.org/10.1134/S0026893324010151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010151

Keywords:

Navigation