Skip to main content
Log in

Spatial Models of Piezo Proteins and Protein‒Protein Interaction Networks in Trichoplax Animals (Placozoa)

  • BIOINFORMATICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The marine free-living organism Trichoplax (phylum Placozoa) resembles a unicellular amoeba in shape and type of movement. Trichoplax diverged from the main evolutionary tree in the Neoproterozoic Era. Trichoplax provides one of the simplest models of multicellular animals and a strong example of how cells of an organism interact to form an ensemble during its development and movement. Two orthologs of the mouse Piezo1 protein (6B3R) were found in two Trichoplax haplotypes, H1 and H2, as a result of a search for similar sequences in the NCBI databases. Spatial models of the respective proteins XP_002112008.1 and RDD46920.1 were created via a structural alignment with 6KG7 (mouse Piezo2) template. Their domain structures were analyzed, and a limited graph of protein‒protein interactions was constructed for the hypothetical mechanosensor XP_002112008.1. The possibility of signal transduction from the mechanoreceptor to membrane complexes, the cytoplasm, and the cell nucleus was shown. Trichoplax mechanoreceptors were assumed to play a role in perception of force stimuli from neighbor cells and the environment. Based on the results, the primitive Trichoplax organism was proposed as the simplest multicellular model of mechanical and morphogenetic movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Niethammer P. 2021. Components and mechanisms of nuclear mechanotransduction. Annu. Rev. Cell Dev. Biol. 37, 233‒256. https://doi.org/10.1146/annurev-cellbio-120319-030049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fajardo-Cavazos P., Nicholson W.L. 2021. Mechanotransduction in prokaryotes: A possible mechanism of spaceflight adaptation. Life (Basel). 11 (1), 33. https://doi.org/10.3390/life11010033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin P., Jan L.Y., Jan Y.N. 2020. Mechanosensitive ion channels: Structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43, 207‒229. https://doi.org/10.1146/annurev-neuro-070918-050509

    Article  CAS  PubMed  Google Scholar 

  4. Marshall K.L., Lumpkin E.A. 2012. The molecular basis of mechanosensory transduction. Adv Exp. Med. Biol. 739, 142‒155. https://doi.org/10.1007/978-1-4614-1704-0_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clapham D.E. 2007. Calcium signaling. Cell. 131 (6), 1047‒1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  6. Perozo E. 2006. Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol. 7 (2), 109‒119. https://doi.org/10.1038/nrm1833

    Article  CAS  PubMed  Google Scholar 

  7. Arnadóttir J., Chalfie M. 2010. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111‒137. https://doi.org/10.1146/annurev.biophys.37.032807.125836

    Article  CAS  PubMed  Google Scholar 

  8. Earley S., Santana L.F., Lederer W.J. 2021. The physiological sensor channels TRP and Piezo: Nobel prize in physiology or medicine. Physiol. Rev. 102 (2), 1153‒1158. https://doi.org/10.1152/physrev.00057.2021

    Article  CAS  Google Scholar 

  9. Du G., Chen W., Li L., Zhang Q. 2022. The potential role of mechanosensitive ion channels in substrate stiffness-regulated Ca2+ response in chondrocytes. Connect. Tissue Res. 63 (5), 453‒462. https://doi.org/10.1080/03008207.2021.2007902

    Article  CAS  PubMed  Google Scholar 

  10. Coste B., Mathur J., Schmidt M., Earley T.J., Ranade S., Petrus M.J., Dubin A.E., Patapoutian A. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330 (6000), 55‒60. https://doi.org/10.1126/science.1193270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang X.Z., Zhou T., Xu J.Q., Wang Y.X., Sun M.M., He Y.J., Pan S.W., Xiong W., Peng Z.K., Gao X.H., Shang Y. 2021. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci. 11 (1), 13. https://doi.org/10.1186/s13578-020-00522-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barzegari A., Omidi Y., Ostadrahimi A., Gueguen V., Meddahi-Pellé A., Nouri M., Pavon-Djavid G. 2020. The role of Piezo proteins and cellular mechanosensing in tuning the fate of transplanted stem cells. Cell Tissue Res. 381 (1), 1‒12. https://doi.org/10.1007/s00441-020-03191-z

    Article  CAS  PubMed  Google Scholar 

  13. Ge J., Li W., Zhao Q., Li N., Chen M., Zhi P., Li R., Gao N., Xiao B., Yang M. 2015. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 527 (7576), 64‒69. https://doi.org/10.1038/nature15247

    Article  CAS  PubMed  Google Scholar 

  14. Coste B., Xiao B., Santos J.S., Syeda R., Grandl J., Spencer K.S., Kim S.E., Schmidt M., Mathur J., Dubin A.E., Montal M., Patapoutian A. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 483 (7388), 176‒181. https://doi.org/10.1038/nature10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coste B., Murthy S.E., Mathur J., Schmidt M., Mechioukhi Y., Delmas P., Patapoutian A. 2015. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat. Commun. 6, 7223. https://doi.org/10.1038/ncomms8223

    Article  PubMed  Google Scholar 

  16. Syeda R., Florendo M.N., Cox C.D., Kefauver J.M., Santos J.S., Martinac B., Patapoutian A. 2016. Piezo1 channels are inherently mechanosensitive. Cell Rep. 17 (7), 1739‒1746. https://doi.org/10.1016/j.celrep.2016.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Syed T., Schierwater B. 2002. The evolution of the Placozoa: A new morphological model. Palaeobiodiversity Palaeoenviron. 82 (1), 315‒324. https://doi.org/10.1007/BF03043791

    Article  Google Scholar 

  18. Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U., Kawashima T., Kuo A., Mitros T., Sa-lamov A., Carpenter M.L., Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta S.L., Rokhsar D.S. 2008. The Trichoplax genome and the nature of placozoans. Nature. 454 (7207), 955‒960. https://doi.org/10.1038/nature07191

    Article  CAS  PubMed  Google Scholar 

  19. Kamm K., Osigus H.J., Stadler P.F., DeSalle R., Schierwater B. 2018. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci. Rep. 8 (1), 11168. https://doi.org/10.1038/s41598-018-29400-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith C.L., Varoqueaux F., Kittelmann M., Azzam R.N., Cooper B., Winters C.A., Eitel M., Fasshauer D., Reese T.S. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24 (14), 1565‒1572. https://doi.org/10.1016/j.cub.2014.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wenderoth H. 1990. Cytoplasmic vibrations due to flagellar beating in Trichoplax adhaerens F. E. Schulze (Placozoa). Z. Naturforsch. 45, 715‒722. https://doi.org/10.1515/znc-1990-0624

    Article  Google Scholar 

  22. Armon S., Bull M.S., Aranda-Diaz A., Prakash M. 2018. Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proc. Natl. Acad. Sci. U. S. A. 115 (44), E10333‒E10341. https://doi.org/10.1073/pnas.1802934115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuznetsov A.V., Halaimova A.V., Ufimtseva M.A., Chelebieva E.S. 2020. Blocking a chemical communication between Trichoplax organisms leads to their disorderly movement. Int. J. Parallel Emergent Distrib. Syst. 35 (4), 473‒482. https://doi.org/10.1080/17445760.2020.1753188

    Article  Google Scholar 

  24. Kuznetsov A.V., Vainer V.I., Volkova Y.M., Kartashov L.E. 2021. Motility disorders and disintegration into separate cells of Trichoplax sp. H2 in the presence of Zn2+ ions and L-cysteine molecules: A systems approach. Biosystems. 206, 104444. https://doi.org/10.1016/j.biosystems.2021.104444

    Article  CAS  PubMed  Google Scholar 

  25. Ueda T., Koya S., Maruyama Y.K. 1999. Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence. Biosystems. 54 (1-2), 65‒70. https://doi.org/10.1016/s0303-2647(99)00066-0

    Article  CAS  PubMed  Google Scholar 

  26. Smith C.L., Reese T.S., Govezensky T., Barrio R.A. 2019. Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system. Proc. Natl. Acad. Sci. U. S. A. 116 (18), 8901‒8908. https://doi.org/10.1073/pnas.1815655116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Velankar S., Burley S.K., Kurisu G., Hoch J.C., Markley J.L. 2021. The protein data bank archive. Methods Mol. Biol. 2305, 3‒21. https://doi.org/10.1007/978-1-0716-1406-8_1

    Article  CAS  PubMed  Google Scholar 

  28. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215 (3), 403‒410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  29. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 (6), 845‒858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sayle R.A., Milner-White E.J. 1995. RASMOL: Biomolecular graphics for all. Trends Biochem. Sci. 20 (9), 374. https://doi.org/10.1016/s0968-0004(00)89080-5

    Article  CAS  PubMed  Google Scholar 

  31. Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., Finn R.D., Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49 (D1), D412‒D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  32. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. 2021. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 (D1), D605‒D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  33. Guo Y.R., MacKinnon R. 2017. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 6, e33660. https://doi.org/10.7554/eLife.33660

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang L., Zhou H., Zhang M., Liu W., Deng T., Zhao Q., Li Y., Lei J., Li X., Xiao B. 2019. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature. 573 (7773), 225‒229. https://doi.org/10.1038/s41586-019-1505-8

    Article  CAS  PubMed  Google Scholar 

  35. Grigorov M.G. 2005. Global properties of biological networks. Drug Discovery Today. 10 (5), 365‒372. https://doi.org/10.1016/S1359-6446(05)03369-6

    Article  CAS  PubMed  Google Scholar 

  36. Ranade S.S., Syeda R., Patapoutian A. 2015. Mechanically activated ion channels. Neuron. 87 (6), 1162‒1179. https://doi.org/10.1016/j.neuron.2015.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fadeeva M.V., Kurchenko V.M., Kuznetsov A.V. 2022. Modern trends in biological physics and chemistry BPPC–Proceedings of XVII International Scientific Conference, 2022. Sevastopol, Russia, Abstract book. pp. 201‒202.

  38. Fadeeva M.V., Sergeeva E.V., Rybakova K.A., Kuznetsov A.V. 2022. Characteristics of the cationic TRPA1-channals family in Trichoplax sp. H2 (Placozoa). Russ. J. Biol. Phys. Chem. 7 (3), 493‒450. doi.org/https://doi.org/10.29039/rusjbpc.2022.0550

    Article  Google Scholar 

  39. Scheres B., van der Putten W.H. 2017. The plant perceptron connects environment to development. Nature. 543 (7645), 337‒345. https://doi.org/10.1038/nature22010

    Article  CAS  PubMed  Google Scholar 

  40. Timsit Y., Grégoire S.P. 2021. Towards the idea of molecular brains. Int. J. Mol. Sci. 22 (21), 11868. https://doi.org/10.3390/ijms222111868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox C.D., Bavi N., Martinac B. 2019. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 29 (1), 1‒12. https://doi.org/10.1016/j.celrep.2019.08.075

    Article  CAS  PubMed  Google Scholar 

  42. Lewis A.H., Grandl J. 2021. Piezo1 ion channels inherently function as independent mechanotransducers. Elife. 10, e70988. https://doi.org/10.7554/eLife.70988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang X., Lin C., Chen X., Li S., Li X., Xiao B. 2022. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature. 604 (7905), 377‒383. https://doi.org/10.1038/s41586-022-04574-8

    Article  CAS  PubMed  Google Scholar 

  44. Young M., Lewis A.H., Grandl J. 2022. Physics of mechanotransduction by Piezo ion channels. J. Gen. Physiol. 154 (7), e202113044. https://doi.org/10.1085/jgp.202113044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. Graciela Pavon-Djavid (Laboratoire de Recherche Vasculaire Translationnelle, Institut Galilée, Université Sorbonne Paris Nord, France) for published data, students V.I. Vainer and Yu.M. Volkova for help in Trichoplax studies, postgraduates A.V. Khalaimova and M.N. Ufimtseva, and anonymous reviewers for their helpful advices on improving the manuscript.

Funding

This work was supported by the Government of the Russian Federation in accordance with Rule no. 220 (agreement no. 14.W03.31.0015 dated 28.02.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Vtyurina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.V., Grishin, I.Y. & Vtyurina, D.N. Spatial Models of Piezo Proteins and Protein‒Protein Interaction Networks in Trichoplax Animals (Placozoa). Mol Biol 57, 905–912 (2023). https://doi.org/10.1134/S0026893323050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050072

Keywords:

Navigation